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Abstract
In this short note. we study a class of nonlinear control svatenns
which ean he controlled by switching hetween many linear dyvnamies.
Weo show the following resulis

1. A dynamical svstemn that can be controlled by switching hetween
two linear modes is quadratically stabilizable via stare-feedback
of and only of there exists an asymptrotically stable convex cow-
binarion of these modes,

2. A dynamical system that can be controlled by swirching between
miany linear modes is quadratically stabilizable via output feed-
back if there exists an asyvmptotically stable convex combination
of these modes and it s gquadratieallv deteetable,

A mechanieal example is provided that illustrates these two resuls
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1 Introduction

This note 1s concerned with the dvuamical system

il
—ux = A, (1)
dt v
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where n(4) is a switching rule defined by olf) : R = 1..... L. Thus. the
niatrix A, 18 allowed to take values only 1 the set {4 .. 4,3, Such
a system is said to be sunlched. With the advent of new smart materials,
switching systems are lkely to take a growing importance in count rol theory
and practice. Switching systenms may be st udied from a variety of viewpoints.
The first. viewpoint. is that the switching rule o) is an exogenous variable.
and then the problem is to study whether there exists a cortain segquence a(f)
that will render the system (1) unstable. Such a problem is particularly im-
portant in aerospace applications. for example. where badly gain-scheduled
control logies may result in aireraft instabilitv. and it has been the subject
of & large number of publications. See for example [3. 5. 4. 16. 15. 14]. See
also the book by Den Hartog {100

The second viewpoint. which is of interest here. is when the switching
male is available to the control engineer. It may then he used for cont rol pur-
poses. (o suppress vibrations i1 a structure using variable stiffness {see [6]
and references therein. for example). Many techniques have been envisioned
o 1se switches between linear mades for control purposes. Sohitions based
on maximization of instantancons energy decay rate have heen proposed
in "12]. and optimal control techimiques have been proposed in [6'. Tn o the-
oretical framework. solutions based on Lvapunov stability theory have been
proposed i {17]. Tu particular. it has been shown in [17] thai existenee of
an asviptotically stable convex combination of the linear modes Ay A7
ftplies the existence of a state-feedback switching law that stabilizes the
svstewn (1), along with a quadrate Lyapunov function that proves it 1n
the present paper. we extend this result in two directions: First. we prove
that whet the number of modes is equal to two (1 = 2], then existence of
an asviiptotically stable convex combination of the linear modes Ao Ay s
equivalent to the existence of a state-feedback switebing law that stabilizes
the svstem (1), along with a quadratic Tvapunov function thar proves it
Socond. we provide an attractive set of conditions for which stability via
quadratic Lyapunov functions can be ensured via dynamie output feedback.

2 Quadratic Stabilization via State Feedback
We introduce the {following definition:

Definition 2.1 The system (1] is guedratically siabilizoble via state-feedback
if and only if there crists ¢ positive-definite function V() = ! o, posi-




tore number € and a swilching rude ar t) such that

H\'(.x'\) < el

for all frajectories o of the sysiem (1),
We now recall a theoren of [17]:

Theorem 2.1 The sysiem (1) is quadratically stabilizable if there caists o,
L
7 238 dorws v s L nonnegative and not all zevo such thot Z o, A, ds asymptotically

Tesl]
stablc.

The first contribution of this note is to extend this theorem from an ~if”
statenent to an “if and only 7 statement in the case when L = 2. In order
to do so. we introduce the following lemma on the S-procedure {see 2] for
4 complete presentation and bibliograpliv).

Lemma 2.1 Lei 7.7, & R"™™ be symmetric matrices. We consider Ui
0.4 Y
SJollowrnyg condition on 4y 1y

Ty > 0 for all /0 such that (T = 0. (2)
Then (2) holds if and only of

there erists v 2> O sach that Ty — 7T > 0, (3)
provided there is some (o such that 1:({ 170 > 0.

One should note that the “if7 part of the lemma is casy to prove, whereas

ihe ~only il part reguires more care. A proof of it may be found in (8. We
are now ready to state our improved theorem:

Theorem 2.2 Assume L = 2. The system (1) is guadratically stabdizable
if and ouly if fhere cwtsts pep, o nonnegalive satisfying o+ s = 1 such thaf
(A~ pip Ay s asymplotically stable.

Proof: Assume the system (1) 1s quadratically stabilizable with the quadratic

Lvapunoyv fanction Vizy = 2" Pr. P> 0. Then, computing

d b
Vigh=a (Al P+ PA )

df apr.t}




we conclude thal quadratic stability occurs il and ouly if there exists ¢ > O
such that for any nonzero 2. either

T (‘4‘(1—) + PA e < —exl .

or

! (4!, P+ PAsyr < —erly
Another way of restating this is to say that guadratic stability will ocenr if
and only if for any x £ 0

@l (A?[’ 4 PA < ety o
whenever #7 (A;f P4 DA 2 —era ¢

and o
s AL P+ PAy e < —erlr
whenever (AT P+ PA b = —crtr.

Assimuing there exists o such that 2T (AT 4 PASr > —eat . Lenona 2.1
applies and we conclude that (1) Lolds if and only if there exists 4, > O such
thiat

ATP+ PA 4 S ALP + 24 < (140 ber! (G)

Similarly. (5) will hold if and only if there exists 8y > O such that

ALP v PA + Al P PA < (14 aotead r. (7)
Nowe that the condition {7} is implied by (6). Indeced. by continuiry. i (6)
Lolds for some §, > 0 then it must hold for some 4y » 0. Then (T) is
equivalent to (6) for 8 = 1/d. The condition (6) can also be written

'(’4—11 ,71 ’5],'471&]—1’ + P(A-h : mg < et (8}
1T+ 0 1+ 6
which is equivalent to say that (A2 842} /(1 4 &} is asyupto cally stable.
and gy = LA+ 0p) pe = 174 + s ).
Assume now that the last condition of Lemma 2.1 does not apply for
cither one of the conditions (4) or (5). Then cither for all o

2! (_41 P+ PAYr el <0

or. for all »
x! (A,J P+ 1PA)re + exl <0,




Tn any case. we then conclude directly that Ay or Ay is asymptotically stable.,
Thus. in any case. quadratic stabilizability of the system (1) holds if and

only if a convex combination of 4; and 4, s asymptotically stable. ]
We remnark that interpreting the Lyapunov function ¥ (x) - of P as an
encrgy function. an efficient control stategy that cusures maximum instan-

tancous decay of 17 1s

Vit o7 (Al P+ PA e <ol AP = Py

Hf) = .
L 2 otherwise

{91

3 Quadratic Stabilizability via Output Feedback

We now study the switched system

o 4
IJ = Apipd (10}
=t

where o () is alowed to take any value i the set {1 ... L} and we assmne

that ouly the output g, rather than the state z is available for feedback.
We look for a strategy nsing » to asyinptotically stabilize o to 00 Straight-
forward techuiques using. sav. a Kalman filter may work on this system.
However, besides implementation issues. convergence of the IKahnan filter
neceds proving. I this paper. we are Interested in finding an obscrver-hased
control strategy that is guarantecd to be stable. Much of the developments
prosented here are similar to those of [7. 2], We assume for simplicity that
£ = 2. However, these results easily extend to the more general case,
We have the following theorem:

Theorem 3.1 Assumc there erist (ji). jie} nonnegative and satlesfysng . -
o = Losuch that 1.4 = oAy us asymptotically stable. Assume morcove
that there erisis o positive-defintte matric Pyoand o matrer Y such that

AT+ P = CTYT — Y < -l (111
AP+ P, — 'Y YO < —nl
for sowe 1 > 0. Then, for any posilroe definite symapetrie matria Py satis-
Fuing )

(A + AN Py 4 Papndy 4 peAy) < =




for some ¢ > 0. the Jollounyg observer-based condroller

!
Lo Agid + Ly = CI)
o - )
wlt) = { 1if 7 (A - AT Py + Py(A) — Au))r <0

2 otheruise

drives v and & to U with L = T'I’])"
Proof: We start by rewriting the closed-loop systen in the coordinates
=7 - )
We hiave:
o . ) .
i A v LCLe =}
¢ g
d BBy

m(.z' ~) = Adgye = LOMr =)

Let us prove Lyvapunov stability of this systenn. using {he quadratic Lvi-

U
. g :
Viir)y = { 0 /\Pl}.l.

where A is a positive constaut to be determined. We have

punov fuuetion

/ o ,
fh—\'r,u  AT(AT P b Pyl )i - 207 PO =)
3 oAg = VT (A = ROV P Pl A - LONG =)
= @T(AT Py P A 2 2T P LC (e = 1)
Al — Al Py Pidag — L R S T

o i TR 2T P LC e — @) = Ayl = ) e =)

A

(1)

Ti is casily checked that the last Jine of (11} is negative-definite when choosing
A \I’-gl,(f|\2 Jey (IH| denotes the mascimnm singular value of the matrix
Hi. Thus. Lyapunov stability of {13} is proved. | |
A few comnments may be made regarding this (heorem: first, it is pre-
cented in a forn which is suitable for computer implementation: indeed. the
set of inequalities (11) is a lincar matrix inequality (LMI) in [ and Y. and
thus its feasibility may casily be checked on a computer. Note also that the
~controllability” property is the same as in the state-feedback ease. The
ot of LMIs (11) is equivalent to a robust detectability condition. already
encomtered in other situations [13. 2. 7. 1]. This robust detectability con-
dition ensures convergence to O of the error between the estimate and the

true state. in spite of jumps in the linear dyvnamics.



Figure 1: Mechanical svstem

4 DMlechanical example

L this scetion. we consider the mechauical system shown in Figure 1. Two
masses are attached o a string with tension 1 and they are free to move
along the vertical axis. A gross mechanical device (sueh as an eleetromagnet )
is ahle 1o ser the string tension to either one of the two values 77 = 1 or

=1L Note that the assmmption of coustant tension is fine if we allow
the string to be elastic, since the string elongation is proportional to the
square of the masses™ displacements. Note also that models similar to this
one have appeared in [10]. for example. It might be the very simple model
of arope [121 or even a pre-stressed conerete heam where the pre-stress
tension might be adjustable. Other similar setups might inclade mass-spring,
svstemns where the springs have variable stiffnesses. as can now be done using
siart muaterials [61 The two masses ave subject to a very light drag with
a damping coeflicient ¢ = 0.01. Assuming the masses to be unity and the
distance herween them to be equal to 1, the dynanies of the system may be

W Len as

0 0 1 0 2y
d | a | 0 0 0 1 T2 .
di | &y =2T Tl 0 qy

where T can either take the values 1 or 40 We wish to apply the technigues
presented i this paper to this nodel. We assume first that full-state feed-
back is available. Of course. in this case. the systew is stable in principle
(althongh very badly damped), such that not changing the tension of the
string s an acceptable strategy. However. it does not take full advantage of
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Figure 2: Response to random initial conditions. Top: closed-loop. state-

ferdback. Bottom: open-loop. Contivuous: . Dashed:

the system’s characteristios: indeed. it is obvions that the string tenslon can
be nsed to pump into or remove cnergy frowm the system [10]. Frow our first
theorent. the quadratic Lyapunov finetions we can choose for state-feedback
purpuses are the ones proving stability of the system (15) for any value of
T between 1 and 4. Note that this is a very lightly damped systen. Thus.
there are not that wany Lvapunov functions to choose from for a given T
ffor mure details. see [2] for example]. Inour problem. we chose

150,00 50,00 033 017

P= —H0.00 15000 017 0.33
- .33 0,17 8333 16.67
0.17 0.33 16.67 8333

12, can be proved Lo be a Lyapunov fmction for the open-loop system with
7 =1. Figure 2 shows the positions of the two masses through time, using
stute-feedback enntrol. when the systen is excited to start from some random
initial condition. using the strategy (9). 1t is clear that using state-feedback.
along with the chosen Lyapunov function helps a lot. Keeping the sane
reference quadratic Lyapunov function. we now assuine partial observation

o




o e

of the state only (the position of the first mass). Thus. the observation
vector i may be writien

g:[l 0 o (1]1‘

where p! = [ Ty Xy Iy I ] A gain L that satisfies (11} was foundd

using the convex feasibility code described in [9. 110,
Lo [ -683 —1262 —23.33 35.19 |

and a corresponding P that proves it is

80.67 .15 —9.54 1.89
115 74T 870 —2.92
981 875 174D 6.94
4.89  —2.92 6.9 179

Thus. by virtue of Theorem 3.1, the observer-based controller (12) stabilizes
the svstem. Tor the same random initial conditions. we have plotted in
Fignre 3 the positions of the first and second mass. along with the extimated
positions as a function of time. The initial estinated positions and speed
have beenw arbitrarily set to .

As far as convergenee rate to U 1s concerned. the responses for output-
feedback control do not stgoificantly differ from the responses generated
using full-state teedback control. This can be ateribured to the dyvnamies
of the observer. which are sipnificantly faster than the ones of the control
svstenn TEmay be noted thar control by switching bhetween iwo modes
for this mechanical svstem does vot offer much bandwidth freedon: 1t 1s
essentially Innited by the stiffuess ratio hetween extreme configurations. In
our case. this stiffpess ratio was L For lower stiffness ratios. a smaller decay
rate inthe responses should be expected (with the lindt case when this ratio
is 1. where switching control does not bring anvthing to the system).

5 Conclusion

L this short note, we have extended results on quadratic stabilizability
of a switched system to deseribe the whole family of quadratic Lyapunov
functions that prove it. This family is nonempty if and ouly if some linear
combination ol the two switching matrices is asymptotically stable.  We
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Figure 3. Response to random initial conditions with output feedback. Top:
true position.
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have also shown a shple set of sufficient conditions for stabilizing the same
system via output feedback. The additional condition is a hinear matrix
mequality which may be casily be checked on a computer. We have shown
on a mechanical example how the presented theory may apply.
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