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Abstract

In this thesis, I present an experimentally proven control methodology for the autonomous
execution of aerobatic maneuvers with small-scale helicopters, and a low-order dynamic
model which adequately describes a miniature helicopter in a wide range of flight conditions,
including aerobatics. The control laws consist of steady-state trim trajectory controllers,
used prior to, and upon exit from the maneuvers; and a maneuver execution logic inspired
by human pilot strategies. In order to test the control laws, a miniature helicopter was
outfitted with a custom digital avionics system, and a hardware-in-the-loop simulation was
developed. The logic was tested with several aerobatic maneuvers and maneuver sequences,
which demonstrated smooth maneuver entry, automatic recovery to a steady-state trim
trajectory, and robustness of the trim-trajectory control system toward measurement and
modeling errors. Based on these results, I further propose a simplified hybrid model for a
helicopter under such closed loop control. The model can be utilized in the development of
computationally tractable motion-planning algorithms for agile vehicles.
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Chapter 1

Introduction

1.1 Motivation, research contribution and prior work

Unmanned aerial vehicles came to play a critical role in surveillance applications in the
past decade. Such vehicles usually are stable, non-agile, fixed-wing platforms, flown well
above ground to collect imagery. As surveillance in a hostile urban environment becomes a
necessity, so does the need for agile miniature rotorcraft with a sufficient degree of autonomy
for a safe remote operation. Historically, nap-of-the-earth flying was essential for survival
of helicopter crews in hostile environments [42], the same agility-enabled tactic can be
envisaged for unmanned rotorcraft in an urban or mountain canyon.

Miniature helicopters with stiff hub retention and high thrust-to-weight ratio possess
natural agility required for such tasks [37]. Following physical scaling rules, as the vehicle
size decreases, the moments of inertia decrease with the fifth power of the scale factor, while
the rotor thrust nominally decreases proportionally to the vehicle mass, i.e., to the third
power. Some miniature helicopters can develop thrust 2-3 times higher than their weight,
which accentuates the scaling effects. Moreover, the rotor heads of miniature rotorcraft
are relatively more rigid than those in full-scale helicopters, allowing for large rotor control
moments. These traits enable fast time response and high angular rates, allowing these
vehicles to perform tasks that are impossible for full-scale helicopters. Many such vehicles
can fly with a negative thrust, providing for sustained inverted flight. For example, expert
R/C pilots perform negative-g maneuvers like the split-S, shown in Figure 1-1. Most full-
scale helicopters can not sustain negative loading due to flexibility of the blades and hub
retention, those few helicopters with hingeless rotors and stiff blades usually do not have
high enough negative collective range.

Remotely controlled miniature helicopters equipped with film and video cameras were
used in cities and mountain canyons to shoot birds-eye footage for documentaries, car
commercials and action movies. This particular application requires not only agile, but also
smooth maneuvering between obstacles like skyscrapers, in order to produce a high-quality
footage. Such a task requires an exceptionally skilled pilot.

To enable a broader use of these extremely agile vehicles, a control methodology for
an autonomous execution of aggressive maneuvers is proposed in this thesis. The result-
ing control laws consist of a maneuver execution logic inspired by human pilot strategies,
and steady-state trim trajectory controllers, which enable safe recovery from the maneu-
vers. The key enabling step was the study and mathematical modeling of pilot’s feedback
and feedforward strategies for maneuver execution, and finding an appropriate feedback
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Figure 1-1: Miniature helicopter undergoing a Split-S maneuver. The same maneuver was
performed fully autonomously using the control methods developed in this thesis. Drawing
courtesy of Popular Mechanics magazine.

structure, which provided repeatable execution of the maneuvers.
This control approach was tested on a 5 ft rotor diameter helicopter designed for com-

petition aerobatics [41], which performed several aerobatic maneuvers, including a split-S,
under exclusive computer control [15]. The helicopter was instrumented with a custom-
designed avionics box [47], and control logic was implemented in software.

To enable the development of model-based control laws, we developed a unique nonlinear
simulation model [17], which adequately represents a miniature hingeless rotor helicopter
in aerobatic flight. Miniature helicopters are dominated by the strong moments produced
by the rotor, which relieves the need for complicated models of secondary effects usually
found in the literature on full-scale helicopters. We demonstrated that a simple physics-
based model captures salient dynamics for the miniature helicopters in a wide range of flight
conditions. Previously developed modeling techniques for small-scale helicopters relied on
a frequency-domain system identification [40, 28]. The linear models obtained with these
techniques show that a relatively low order of the state vector is sufficient for an adequate
description of the helicopter dynamics around trim conditions. However, the accuracy of
the frequency domain identification methods reduces in the presence of feedback [31], which
is necessary in the case of an open-loop unstable system, such as a helicopter. While a
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good accuracy can be achieved for higher frequency modes, the methods are unreliable for
describing low-frequency modes, primarily because of the pilot feedback. The modeling
framework suggested here relies on simple flight test responses such as steps and pulses to
estimate those parameters that can not be measured in the lab. The resulting model is not
computationally intensive, and was used in a real-time hardware-in-the-loop simulator [47],
developed for exhaustive testing of the digital control system in the conditions close to those
in the actual flights.

Applications of control systems to full-scale helicopters primarily dealt with improving
handling qualities via limited-authority control augmentation systems [50, 9]. These sys-
tems were designed with classical control methods, sometimes using an optimization routine
to match specifications [7]. Some of the recently developed attack helicopters (e.g. Boe-
ing’s Apache or Eurocopter’s Tiger helicopters) featuring rotors without a flapping hinge
have demonstrated an axial roll maneuver, while flown by a pilot with the assistance of a
control augmentation system (apparently using angular rate feedback). Full-scale airframe
manufacturers have recognized that aerobatic capability in itself is frequently an attractive
feature of a vehicle, as it is used in airshows to promote sales. However, full scale heli-
copter aerobatics remains largely esoteric, being extremely dangerous and demanding for a
pilot. To our knowledge, until now there were no reports of aerobatic maneuvers performed
entirely under computer control with either full scale or miniature helicopters.

The first fully integrated autopilot for helicopters was developed in the late sixties-early
seventies for CH-53A helicopter used by the Marines [42]. It was capable of waypoint
navigation and automatic terrain following at low altitude. The autopilot was developed
using classical techniques with sequential loop closures, which impose well-known bandwidth
constraints because of the frequency separation requirement. The use of classical, decoupled
feedback loops was probably driven by the available hardware, i.e. analog circuits used to
implement control laws. The advent of digital control systems enabled the use of model-
following controllers on US Army RAH-66 Comanche helicopter [9], first flown in the late
nineties. It is interesting to note that while digital fly-by-wire systems, and hence, modern
control methods (which have the potential to provide better performance than the classical
control methods at a higher computational cost), found widespread use in the fixed-wing
aircraft, helicopter manufacturers have been rather slow to follow the trend. This is despite
the fact that flying a helicopter is, generally, much more demanding and fatiguing than
flying an airplane.

Previous experimental work on autonomous control of miniature helicopters concen-
trated on tracking non-agile trajectories. LaCivita et al. [27] have tested an H-infinity loop
shaping controller on a Yamaha R-50 helicopter. Johnson and Kannan [24] have imple-
mented a neural network-based adaptive controller on an improved version of the R-50, the
Yamaha RMAX helicopter. In both cases, an accurate tracking of simple trajectories at
moderate speeds was achieved. The Yamaha helicopters are an order of magnitude heavier
than the X-Cell, feature a relatively flexible hub, and are not capable of extremely agile
maneuvering.

The method developed in this thesis can be used in a higher-level motion planning algo-
rithm to utilize the agility of a vehicle. For example, Frazzoli et al. [13] developed a motion
planning method based on a maneuver automaton, where vehicle motion is described by
trim trajectories and discrete finite-time transitions between trim trajectories, or maneu-
vers. By discretizing the set of states describing the trim trajectories, and enumerating all
allowable maneuvers it is possible to reduce a problem of optimal path planning for a vehicle
to a tractable optimization problem [13]. To use the method in practice, the maneuvers
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need to be executed in a repeatable fashion, with a guaranteed quick recovery. This calls
for feedback control laws for maneuver execution, and trim trajectory controllers with fast
response, examples of which are presented here.

Here we suggest another hybrid model for motion planning, which describes vehicle
dynamics under the control laws developed in this thesis. It is shown here that the closed-
loop dynamics under the trim-trajectory tracking controllers can be approximated by a set
of decoupled first-order models (in velocity, turn rate, and altitude rate). Furthermore,
vehicle behavior can be represented as a state machine, with the states being either trim
trajectory control mode, or one of the maneuvers in the assembled library of maneuvers.
Each maneuver has a predefined set of entry conditions (e.g. speed and altitude), and
if these conditions are met for each successive maneuver, sequences of maneuvers can be
performed. This connectivity property was demonstrated in flight, when the helicopter
performed a hammerhead maneuver immediately after completing a split-S.

To summarize, the main contributions of the thesis are: a human-inspired control logic
which enabled for the first time a fully automatic execution of aerobatic maneuvers; high-
bandwidth trim trajectory controllers, which provide a smooth recovery from the maneuvers;
a modeling framework for hingeless rotor miniature helicopters, which yields accurate and
simple simulation models for aerobatic helicopters; and a simplified hybrid model for motion
planning, which describes closed-loop helicopter dynamics under the control laws developed
in this thesis.

1.2 Thesis outline

We start with describing the experimental setup used in this work in Chapter 2. First, we
briefly describe the custom avionics [47] and vibration isolation mount [18] designed for a
miniature aerobatic helicopter. Next, we summarize the state estimation algorithm used for
modeling work in post-processing and for feedback control in real-time, and an improved
measurement update algorithm, which avoids the need for normalization of attitude repre-
sentation. Section 2.4 covers the hardware-in-the-loop simulation developed and used for
testing the algorithms.

Chapter 3 contains a complete self-contained description of the nonlinear dynamic model
for a hingeless rotor miniature helicopter. It contains equations of motion, identified and
measured parameter values, as well as flight test data used for derivation of the model. For
completeness we also provide dynamic models for the actuators, and error models for the
sensors.

Chapter 4 describes the control logic for automatic execution of aerobatic maneuvers.
Sections 4.2 and 4.3 cover the design of and flight test data for the trim trajectory controllers,
which provide smooth exit from the maneuvers. Section 4.4 describes the human-inspired
logic for a fully autonomous execution of aerobatic maneuvers. Section 4.5 describes the
simplified hybrid model of closed loop dynamics.

The thesis concludes with Chapter 5, where we suggest further avenues of research.
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Chapter 2

Experimental setup

2.1 Airframe and avionics payload suspension system

An X-Cell 60 hobby helicopter [41] was chosen as the platform for testing the autonomous
aerobatics algorithms. The helicopter weighs close to 10 lbs empty, carries a 7 lb avionics
payload and 1 lb of fuel, which lasts for about 9 minutes. A hingeless main rotor is equipped
with a Bell-Hiller stabilizer bar [2], which provides lagged rate feedback and augments the
servo torque with aerodynamic moment to change the cyclic pitch of the blades. The
helicopter is powered by a piston engine running on a mixture of methanol, nitromethane
and oil. In the course of the project we replaced the original engine (engine capacity .6 cubic
inches, or 10 cc, with maximum horsepower of approximately 2.2) with a more powerful one
(.9 cubic inches, or 15 cc, 3 horsepower maximum) to retain more maneuver margin. The
helicopter is equipped with an electronic governor, an off-the-shelf device which measures
rotorspeed with a magnetic sensor and adjusts throttle setting to maintain the setpoint
(1600 rpm). The detailed specifications for dynamic response of the governor were not
available. Based on the flight data analysis shown in Chapter 3 we concluded that the
governor acts as a proportional-integral controller, and estimated the feedback gains.

Figure 2-1 shows the helicopter in flight carrying the avionics box mounted on a custom
suspension system to attenuate vibration inputs. High vibration levels significantly degrade
performance of inertial sensors leading to high drift rates. Vibration also makes electronics
more prone to failures, such as broken solder joints or loose connectors. There are several
sources of vibration on a helicopter: the main rotor, the engine, the tail rotor, all of which
can excite lightly damped structural modes, e.g. first bending mode of the tail boom.
Data from an experiment with hard mounted inertial sensors have shown that the most
important vibration source is the one-per-rev component from the main rotor, with the
nominal frequency of 26.7 Hz. The suspension system consists of four neoprene isolators,
located in the corners of a rectangle. The center of gravity of the suspended assembly is
located at the center of the rectangle, which serves to decouple the translational modes
and the rotational ones [10]. Neoprene has a low damping ratio ζ = 0.05, which leads to
fast decay of the transmissibility function, at the cost of a high peak at resonance (×10).
The transmissibility function, depicted in Figure 2-2 for neoprene and another material
with a higher damping ratio (ζ = 0.15), shows the ratio of the vibration amplitude of the
suspended assembly to that of the base (airframe), given as a function of the ratio of the
base vibration frequency to the natural frequency of the suspension system. According
to Figure 2-2, for a low-damping material the airframe vibration inputs are attenuated
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Figure 2-1: Instrumented X-Cell helicopter in flight

roughly by the square of the ratio, for a wide range of these ratios (e.g. 2-10). The choice
of natural frequencies represents a tradeoff: the suspension should be flexible enough to
provide adequate vibration isolation, but stiff enough to avoid coupling with the modes of
interest for vehicle control. Note also that high transmissibility at resonance may lead to
insufficient gain margin in a closed loop system. The gain margin problem can be alleviated
by using digital notch filters at the resonant frequencies, but this leads to phase lag at
lower frequencies, thereby reducing available bandwidth of the controllers. As a result,
we chose desired frequencies to be in the range of 9 to 13 Hz. An additional requirement
on the minimum stiffness is posed by aerobatics: the suspension system was designed to
withstand 3 g’s normal acceleration without bottoming out. The translational frequencies
are set by the radial and axial spring stiffness ratings of the isolators given the mass of the
assembly. The frequencies of the rotational modes are proportional to the distance between
the isolators (and inversely proportional to the respective radii of inertia, determined with
the effective torsional pendulum tests [10]). The isolators had to be located inside the box
(see Figure 2-3) to achieve the desired frequencies.

For certain applications, like aerial imaging, superior vibration isolation can be achieved
by using vibration mounts made of viscoelastic materials (Sorbothane, Barry-LT compound,
etc), which feature higher damping ratios than neoprene. As can be seen in Figure 2-2, for
a material with a damping ratio of 0.15, representative of a number of such materials, the
transmissibility at resonance is reduced significantly (by a factor of 3), while it is increased
only slightly at higher frequencies (e.g. at a frequency ratio of 3:1 the increase is by a factor
of 1.28). Even in the absence of periodic inputs, the resonant frequency will be occasionally
excited by step-like inputs from the pilot, or other disturbances (e.g. occasional engine
sputtering), in which case the higher-damping materials will provide much better isolation.
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Figure 2-2: Transmissibility function for different materials

2.2 Avionics system

Autonomous aerobatics calls for a high-bandwidth control system, which in turn necessi-
tates fast servomechanisms, low latencies in the computers, and fast sensor response. The
fastest actuator response is required for modulating the tail rotor pitch. We used a newly
available digital servo, Futaba S9450, which features 7 Hz no-load small-signal bandwidth
(i.e. frequency at which phase lag reaches 90 degrees). The torque on the tail rotor servo
is small compared to the torque rating of the servo (105 oz.-in.), pitching inertia of the tail
rotor blades is almost negligible, therefore the no-load bandwidth test is representative of
its performance in flight. The main rotor actuators are older analog servos Futaba S9402.
These servos were tested with a mean torque load of 35 oz.-in. (stall torque 111 oz.-in.)
and a small inertial load. These tests resulted in an estimate of small-signal bandwidth of
5 Hz.

The core of the sensor suite was an inertial measurement unit (IMU) from Inertial
Science [23]. It contains three gyroscopes and three accelerometers. The range of gyroscopes
was set at ±300 deg/sec, and the range of accelerometers at ±5 g’s. The helicopter with the
payload is capable of achieving roll rates of 200 deg/sec, and yaw rates in excess of 1,000
deg/sec. The yaw rate command was limited in software to avoid sensor saturation and
ensuing instability. The IMU had an internal power regulation, temperature compensation,
serial output at 100 Hz and internal first order analog anti-aliasing filters, with the corner
frequency set at 9 Hz. In hindsight, the frequency of the anti-aliasing filters should have
been set higher, around 20 Hz, to reduce the phase lag at lower frequencies. The drift
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Figure 2-3: Vibration-isolated avionics assembly
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rates of the gyroscopes were on the order of 0.02 deg/sec, and for accelerometers 0.02
g’s for the duration of flight. To compensate for these low-frequency errors of the gyros
and accelerometers, several more sensors were used to provide Kalman filter measurement
updates.

A barometric altimeter, HPA200 from Honeywell, featured 2 ft resolution (0.001 psi),
and excellent stability. Since the duration of flight was short, ambient pressure changes
were negligible. The altimeter has an internal power regulation, temperature compensation
and serial output, which was sampled at 5 Hz. Internally, pressure was sampled at 120 Hz,
and averaged for 200 msec to produce the output. Since the altimeter is used to provide
low-frequency updates, this effective delay was deemed tolerable. The altimeter and its
pressure port were housed inside the avionics box, which shields the measurement from the
pressure changes in the main rotor wake and from dynamic pressure induced by the vehicle
motion and wind. It provides a reliable altitude measurement out of ground effect (about
2 rotor diameters, or 3 meters).

A Global Positioning System (GPS) receiver was used to provide 2-D (North and East)
position and velocity updates. In the beginning a low-cost receiver with 1 Hz sampling
period and 1 sec latency was used. A system of gravity-aiding complementary filters [47]
was used to estimate vehicle attitude, and velocity estimates were re-set each time a new
GPS measurement was available. A triaxial magnetic compass was used to provide heading
updates. An autonomous axial roll was performed with this suite, however the attitude and
velocity estimates were rather crude. A high-end receiver, G12 from Ashtech, was installed.
This receiver features 10 Hz update rate and maximum 50 msec latency. An Extended
Kalman Filter (EKF), described in the next section, was implemented to provide a more
accurate state estimate.

A low-cost triaxial magnetic compass, used for heading updates in the original sensor
suite, was discarded. The magnetoresistive sensor required an external in-flight temperature
and offset compensation provided by short duration high amplitude current pulses. The
sensor provided analog outputs, and highly accurate voltage reference was used. Still,
after the compensation and hard-iron calibration of the compass, the heading accuracy
was around 15 degrees. The EKF with the updates from the low-latency receiver provided
heading accuracy on the order of 6 degrees.

It is interesting to note that the development of a sensor suite in the university environ-
ment is best implemented with smart sensors, i.e. temperature compensated, with precise
internal voltage reference, and providing a digital output. To develop a highly integrated,
high performance sensor suite from low-cost components requires a significant investment
into laboratory equipment, and development time. For a custom one-of-a-kind, or even a
low-volume-production research unit it makes economic sense to pay extra for smart sensors.
The best solution would be to use an off-the-shelf miniature avionics suite with adequate
performance characteristics, however such a device has not been available on the market
during the project.

Other avionic devices included a flight control computer (TP400 from DSP design, with
a Pentium MMX 300 MHz compatible processor, ample random access and non-volatile
memory and I/O), a wireless LAN transceiver, a remote-control (R/C) receiver for pilot
commands, and a custom-designed servo board for sampling pilot commands and driving
the servomechanisms at 50 Hz. The flight control processor ran the QNX 4.25 real-time
operating system (RTOS) [25]. The software was implemented in the C programming
language with multiple processes for modularity and, hence, ease of development and testing.
QNX RTOS features short context switching times, on the order of microseconds (the
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context switching time is the time it takes for the processor to switch from one process, or
task, to another one). The most time-critical, and therefore the highest priority software
process consisted of sampling the IMU (arrival of each serial port data packet triggered a
hardware interrupt), running the estimation and control logic, and sending a serial message
to the servo board to drive the actuators. Since the IMU sent data at 100 Hz, and the
servos were driven at 50 Hz, this sequence was performed every second IMU message. A
single execution of the estimation and control logic took less than 2 msec, thereby leaving
roughly 18 msec out of each 20 msec interval for the lower-priority processes (measurement
updates from GPS and altimeter, sampling battery voltage, telemetry, etc). In addition,
it is beneficial to minimize the time lag from sampling the IMU to driving the servos to
reduce phase lag. The IMU data transfer took 1.4 msec, servo command data transfer 2.6
msec, and all the servos were commanded in parallel for 2 milliseconds (the angle of a servo
deflection is proportional to a commanded pulse width, which ranges from 1 to 2 msec).
Therefore the pure time delay amounted to 8 msec, well below the servo control interval of
20 msec.

Radio frequency (RF) interference was addressed in the design. An aluminum box
housing the avionics provided partial protection for the RF interference; and a semi-flexible
antenna guide pointing downwards was used to put the antenna in the experimentally
determined most favorable location. The guide was flexible enough to land on, and at the
same time kept the antenna wire away from the main rotor blades during inverted flight.

By design the servo board, R/C receiver and the servos were electrically isolated from
the rest of the avionics so that the pilot still could control the servos in case of the main
computer failure. However, a small-scale helicopter like X-Cell is hard to fly at low speed
without the yaw rate feedback to tail rotor pitch, because of the large tail rotor control
sensitivity and small natural yaw damping. In moderately fast forward flight the helicopter
becomes more manageable because of the weathercocking provided by the fin and the tail
rotor, and the pilot could attempt a run-in landing.

The wireless datalink was used only to download telemetry information to the ground
station, where the operator monitored the status of various indicators, such as the number
of GPS satellites, battery voltage, attitude indicator, etc. No information was uploaded to
the helicopter after the start of the program.

2.3 State estimation algorithm

Accurate state estimation was essential for modeling work, and the Extended Kalman Filter
(EKF) is a commonly used means to achieve it by blending information from various sensors.
The EKF used for helicopter state estimation employed a novel representation of attitude
error, suggested by Frazzoli [12]. A robust and efficient numerical implementation of the
filter is described below.

The nonlinear navigation equations contain sixteen states: north-east-down position (p̂),
north-east-down velocity (v̂), a 4-state quaternion representation of attitude (q̂), and 3D
vectors of acceleration biases (âb) and gyro biases (ω̂b). The quaternion is free of singularities
associated with the attitude representation based on the three Euler angles, but is subject
to a unit norm constraint [46]. Denote accelerometer readings by am and gyro readings ωm.
Then the navigation equations are:

˙̂p = v̂ (2.1)
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˙̂v = Ĉ (am − âb) +

 0
0
1

 g (2.2)

˙̂q = −1
2

(
Ωm − Ω̂b

)
q̂ + kλq̂ (2.3)

˙̂ab = 0 (2.4)
˙̂ωb = 0 (2.5)

where C is the direction cosine matrix transforming body axis coordinates to the North-
East-Down (NED) system, Ωm and Ω̂b are 4 × 4 skew-symmetric matrices [48] composed
of the gyro measurements and gyro bias estimates, λ = 1 − ‖q‖2

2 is a deviation of the
square of the quaternion norm from unity due to numerical integration errors, and k is the
factor that determines the convergence speed of the numerical error. These factors serve
the role of Lagrange multipliers ensuring that the norm of the quaternion remains close to
unity [46]. The constraint on the speed of convergence for stability of the numerical solution
is k · dt < 1, where dt is the integration time step. The quaternion propagation equation
can be discretized with an analytical computation of the exponent of the skew-symmetric
matrix, given by Stevens [48]. The discrete-time attitude update can be written as:

q(t+ dt) = exp
(
−1

2
Ω · dt

)
q(t) (2.6)

Denote φ = ω · dt - an effective rotation, undergone by the body during the time period of
dt, assuming that the angular rate ω remained constant during the interval. Accordingly,
introduce the 4× 4 skew-symmetric matrix Φ4 = Ω · dt:

Φ4 =


0 φx φy φz

−φx 0 −φz φy

−φy φz 0 −φx

−φz −φy φx 0

 (2.7)

Then, using the idempotent property of the 4× 4 skew symmetric matrices, we get:

exp
(
−1

2
Φ4

)
= I cos s− 1

2
Φ4

sin s
s

(2.8)

where s = 1
2‖φ‖. Eqs. (2.6) and (2.8) ensure in theory that the updated quaternion

q(t + dt) has a unit norm. However, a small Lagrange multiplier term was added to Eq.
(2.8) to maintain numerical stability. The use of the Lagrange multiplier term relaxes the
requirement on the accuracy of computation of the trigonometric functions, and allows us
to use truncated series for cos(s) and sin(s)/s.

q(t+ dt) =
[
I (cos s+ k · dt · λ)− 1

2
Φ4

sin s
s

]
q(t) (2.9)

Eq. (2.9) and discrete-time counterparts of the velocity and position propagation equations
((2.1) and (2.2)) were integrated each time a new IMU measurement arrived, i.e. every 10
msec.

The differential equations for the state estimation error are obtained by linearizing Eqs.
(2.1)-(2.5) around the current state estimate [45]. The resulting Jacobian matrix is used to
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propagate the covariance matrix. The upper-triangular square root time update algorithm
based on Householder orthogonalization procedure was used for higher precision [34]. The
algorithm was optimized to gain speed from the sparseness of the Jacobian matrix, and the
time to run the time update (by far the most expensive computation in the entire flight
software) took less than 2 msec during each 20 msec control cycle.

The linear error model contains 15 states: 3D position (p), 3D velocity (v), 3D attitude
error representation (φ), and 3D vectors for bias estimation errors for accelerometers (κ)
and gyros (µ). Note that whereas the attitude vector is represented by a 4-dimensional
quaternion with the unit norm constraint, the attitude error vector is three dimensional.
This allows us to perform an unconstrained estimation of the attitude error. A number
of 3D attitude error representations have been suggested, and a survey can be found in
ref. [29]. A commonly used attitude error representation [45] is given first in the following.
Let C be the true direction cosine matrix, and Φ be a 3× 3 skew-symmetric matrix, whose
components φx, φy, and φz represent small rotations around each of the body axis. Note
also that Φ, given in Eq. (2.10), represents a vector product matrix, such that for a vector
a ∈ R3 we have Φa = (φ×)a = −(a×)φ.

Φ =

 0 −φz φy

φz 0 −φx

−φy φx 0

 (2.10)

Then the relation between the true and estimated direction cosine matrices is represented
as

C ≈ Ĉ (I + Φ) (2.11)

The measurement update step provides an estimate of the attitude error vector φ. Eq.
(2.11) is then used to generate a new estimate of the direction cosine matrix, and, hence, the
quaternion. However, the orthogonality property of the direction cosine matrix is lost in the
update given by Eq. (2.11). An explicit orthogonalization step is required [45], introducing
another source of error, and increasing computational burden. The errors introduced by
the orthogonalization step grow with the magnitude of the correction, and will be most
noticeable in tasks such as an in-flight alignment (attitude determination after a crude
initialization). Another common 3D attitude error representation is the Gibbs vector [20],
based directly on the variation of the attitude quaternion, rather than the direction cosine
matrix. It also requires a normalization step after the measurement update to preserve the
unit norm of the quaternion [33].

Following Frazzoli [12], instead of Eq. (2.11), the attitude error can be represented by
Eq. (2.12).

C = Ĉ exp (Φ) (2.12)

This is equivalent to

q = exp
(
−1

2
Φ4

)
q̂ (2.13)

given that the same 3D attitude error vector (φ) is used for the elements of matrix Φ4

(Eq. (2.7)). To see the equivalence, consider attitude propagation equations based on the
direction cosine and quaternion representations.

Ċ = CΩ (2.14)
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q̇ = −1
2
Ω4q (2.15)

Assume that the angular rate vector ω is constant during a time interval t, and denote
φ = ωt. Then, provided the initial attitude represented by C0 or q0, the solutions of the
differential equations (2.14) - (2.15) are:

C(t) = C0 exp (Φ)

q(t) = exp
(
−1

2
Φ4

)
q0

Clearly, C(t) and q(t) represent the same attitude.

The attitude error representation in Eq. (2.12) maintains the orthogonality of the
direction cosine matrix:

CCT = Ĉ exp (Φ) (exp (Φ))T ĈT = Ĉ exp (Φ) exp (−Φ)ĈT = Ĉ exp (Φ− Φ)ĈT = I (2.16)

At the same time the linearization of Eq. (2.12) leads to Eq. (2.11), therefore the linear
equations for time propagation of the state estimation error do not change. They are given
in Eqs. (2.17)-(2.19).

ṗ = v (2.17)
v̇ = Ĉ (â×)φ− Ĉκ+ Ĉη (2.18)
φ̇ = − (ω̂×)φ+ µ+ γ (2.19)

Here â = (am − âb) and ω̂ = (ωm − ω̂b) are accelerometer and gyro measurements with the
current bias estimates subtracted, η and γ are random noise components of accelerometer
and gyro measurement errors, κ and µ are bias estimate errors, modeled as random walks [19]
according to the linearization of Eqs. (2.4) and (2.5).

Let us provide the derivations for velocity and attitude error propagation equations,
given in Eqs. (2.18) and (2.19), respectively. Denote by V the true inertial velocity vector,
the differential equation for which is:

V̇ = C (am − ab − η) (2.20)

Subtract Eq. (2.20) from Eq. (2.2), and neglecting second order terms with respect to the
error vector we obtain:

v̇ = ˙̂v − V̇ = Ĉ (am − âb)− C (am − ab − η)
= Ĉ (am − âb)− C (am − âb) + C (am − âb)− C (am − ab − η)

=
(
Ĉ − C

)
(am − âb)− Cκ+ Cη

≈ −ĈΦa− Ĉκ+ Ĉη

= Ĉ (a×)φ− Ĉκ+ Ĉη

Attitude propagation can be alternatively expressed with the derivative of the direction
cosine matrix, resulting in the counterpart of Eq. (2.3):

˙̂
C = Ĉ

(
Ωm − Ω̂b

)
(2.21)
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Similarly, we can express the derivative of the true direction cosine matrix:

Ċ = C (Ωm − Ωb + Γ) (2.22)

where Γ is a skew symmetric matrix composed of the elements of the gyro noise vector (γ).
Next, subtract Eq. (2.22) from Eq. (2.21), and neglect second-order terms:

˙̂
C − Ċ = Ĉ

(
Ωm − Ω̂b

)
− C (Ωm − Ωb + Γ) ⇒

d

dt

[
−ĈΦ

]
= Ĉ

(
Ωm − Ω̂b

)
− C

(
Ωm − Ω̂b

)
+ C

(
Ωm − Ω̂b

)
−

− C (Ωm − Ωb)− C Γ ⇒
−Ĉ

(
Ωm − Ω̂b

)
Φ− ĈΦ̇ = −ĈΦ

(
Ωm − Ω̂b

)
− CM − C Γ ⇒

Φ̇ ≈ Φ
(
Ωm − Ω̂b

)
−
(
Ωm − Ω̂b

)
Φ +M + Γ ⇒

φ̇ = − (ω̂×)φ+ µ+ γ

Here M is a skew symmetric matrix composed of the elements of the gyro bias estimation
error (µ).

The measurement update step remains the same until the incorporation of the computed
attitude correction. Pressure altitude, 2D GPS position and 2D GPS velocity measurements
were used. The updates were implemented with a fast upper triangular square root algo-
rithm developed by Carlson [5, 34]. The method improves numerical stability of the classical
measurement update step by substituting the inversion of a potentially ill-conditioned sym-
metric matrix with the inversion of its square root. The method maintains the square
root of the covariance matrix in the upper triangular form, and was shown to incur small
computational penalty compared with the original algorithm [5].

After the state error vector is calculated, the navigation filter states from the Eqs. (2.1)-
(2.5) are updated. To incorporate the attitude correction (φ) into the quaternion estimate,
we use Eq. (2.13), calculating the skew-symmetric matrix exponent analytically according
to Eq. (2.8). This algorithm ensures that the quaternion norm remains equal to unity
without an additional normalization step. It is also computationally more efficient than
first calculating an updated direction cosine matrix from Eq. (2.12) and then finding the
quaternion vector that corresponds to it.

The source of attitude updates comes from the 2D GPS position and velocity mea-
surements. Note that the heading error becomes unobservable when the resultant of the
non-gravity forces acting on the body (measured by accelerometers) is aligned with the local
vertical [51]. To show this, let us rearrange the velocity error propagation equation in Eq.
(2.18):

v̇ = Ĉ (â×)φ− Ĉκ+ Ĉη =
(
Ĉâ
)
×
(
Ĉφ
)
− Ĉκ+ Ĉη = ân × φn − Ĉκ+ Ĉη (2.23)

where ân represents a vector of forces acting on the body in the NED coordinate frame,

and φn =
[
δφ δθ δψ

]T
is the attitude error vector expressed in the NED frame. From

the vector product in Eq. (2.23) it follows that if ân is aligned with the local vertical,
δψ becomes unobservable. Therefore, some maneuvering is required for convergence of
the heading error. This constraint did not represent a problem for the particular task at
hand (autonomous aggressive maneuvering), however for applications requiring a prolonged
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continuous hover or flight along a straight line an additional source of heading measurement
would be needed.

Such a source is usually provided by a magnetometer, which measures a projection
of the Earth magnetic field vector on the body axes. The measurement equation for a
magnetometer with three sensitive axes is:

Z = Ĉb+ ν , (2.24)

where b represents a known local magnetic field vector, and ν is the measurement noise.
Therefore the error equation for the measurement is

z =
(
Ĉ − C

)
b+ ν = −Ĉ (φ×) b+ ν (2.25)

From Eq. (2.25) we can see that the rotation angle around the magnetic field vector does
not contribute to the measurement. In the absence of the gyro and numerical errors an
initial error rotation angle around the magnetic vector will remain constant. To show this,
consider propagation of the attitude error under these conditions. Denote an initial attitude
error vector by φ0. Then

C(t0) = Ĉ(t0) exp(Φ0)

Since ideal gyro measurements are assumed, the estimate of the direction cosine matrix is
propagated according to the same differential equation as the true one, with different initial
conditions:

˙̂
C = ĈΩ

Integrating the attitude matrix propagation equations

Ĉ(t) = Ĉ(t0)F (t, t0)
C(t) = C(t0)F (t, t0) = Ĉ(t0) exp(Φ0)F (t, t0) where

F (t, t0) = exp
(∫ t

t0
Ω(τ)dτ

)
At the same time:

C(t) = Ĉ(t) exp(Φ(t))

Hence, observing that F (t, t0) is an orthogonal matrix:

exp(Φ(t)) = F T (t, t0) exp(Φ0)F (t, t0) (2.26)

Eq. (2.26) shows that the attitude error follows coordinate transformation rules, therefore
φ0 and φ(t) represent the same attitude error vector, expressed in the original and current
coordinate systems. Therefore, if φ0 represents a rotation around the magnetic field vector,
this error will not be changed by the magnetometer measurement updates.

Thus a magnetometer, like a star-tracker in a satellite, provides effectively two attitude
angles (albeit not aligned with any of the Euler angles). Obviously, the utility of the
magnetometer measurement udpate for estimating attitude depends highly on the accuracy
of the local magnetic field measurement. Prominent factors affecting the accuracy are
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Figure 2-4: Hardware-in-the-loop simulation

temperature drifts and the magnetic field imposed by the helicopter and its payload. A
combination of hardware solutions and hard-iron calibration, applied to a high-end magnetic
sensor can result in accurate two-component attitude updates.

2.4 Hardware-in-the-loop simulation

An essential tool in the development of a real-time control system is a hardware-in-the-loop
simulation (HILSim). It allows the engineer to test the actual software running on the
target hardware in conditions as close to a real flight as is achievable in the lab.

Figure 2-4 presents a diagram of the HILSim. The so-called “clone” computer is a copy
of the flight control computer running the same software; the servo board, R/C receiver
and servomechanisms are also exact copies of their counterparts on the helicopter. The
commands coming from the pilot get delivered to the clone via the servo board. The control
logic in the clone generates servo commands based on the pilot commands and modeled
sensor inputs from the simulation computer, and delivers them back to the servo board.
The servo board drives the servos, their positions are sampled at 100 Hz by the simulation
computer via potentiometers. In the servo rack the second row of servos represents the
potentiometers (low-cost servos with the electric motors removed). The simulation computer
interprets servo deflections as corresponding actuator commands, and integrates equations
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of motion accordingly. It then generates sensor models based on the computed state vector
and a priori models of sensor errors, and feeds these data to the clone via the interfaces
the latter expects. The HILSim captures the latencies inherent in the system, an essential
feature for testing real-time software.

Ideally, the servomechanisms should be appropriately spring- and inertia- loaded to
simulate the effect of these factors on bandwidth. As was mentioned earlier, the actuator
with the most stringent requirement for bandwidth is the tail rotor pitch, which is very
lightly loaded. Therefore, we did not use loading to extend the lifetime of the servos. This
deficiency of the HILSim was taken into account when the control system was designed:
additional phase margin was built in.
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Chapter 3

Dynamic model of a miniature
helicopter

3.1 Overview of Modeling Approaches

There exists an extensive body of literature on the dynamics of full-scale helicopters. Step-
by-step procedures for developing first-principles dynamic models have been devised and
published [44, 2, 49, 22]. The models used in full-scale helicopter simulators typically are
high-order and contain a large number of parameters that often cannot be measured directly.
Moreover, once developed, models require extensive validation and refinement until they can
predict the vehicle dynamic behavior accurately. Applying detailed modeling techniques
is therefore not a trivial task, and may not be warranted given the differences between
full-scale and miniature helicopters. Helicopters evolve in a wide range of aerodynamic
conditions. Complex interactions take place between the rotor wake and the fuselage or
tail. In miniature helicopters, these subtle effects tend to be “overpowered” by the large
rotor forces and moments that follow quasi-instantaneously the rotor control inputs. To the
author’s knowledge, no examples of helicopter models covering aerobatic conditions have
been published prior to this work.

Modeling techniques based on system identification have been used to derive linear
models for control design, study the vehicle flying qualities, and for the validation and
refinement of detailed non-linear first-principle models. Frequency domain identification
methods such as CIFER [43, 50], were used to derive relatively simple linear parameterized
models that capture high-frequency range of the vehicle dynamics around specific operating
points. These models poorly describe lower-frequency modes because of necessary pilot’s
feedback during data gathering flights. Linear models are also inadequate for simulating
many aspects of aerobatic flight because of the large deviations of state variables (attitudes,
angular rates, and velocities) from the trim conditions.

Mettler [37] applied frequency-domain systems identification methods (CIFER) to study
the characteristics of small-scale helicopters. He developed and identified parameterized lin-
ear models for hover and cruise flight conditions for the Yamaha R-50 (a 10 ft rotor diameter,
150 lb helicopter). He later applied the same parameterized model to MIT’s X-Cell .60, val-
idating and extending the observation that the rotor forces and moments largely dominate
the dynamic response of small-scale helicopters. This significantly simplifies the modeling
task. Both flight conditions are accurately modeled by a rigid-body model augmented with
the first-order rotor and stabilizer bar dynamics; no inflow dynamics were necessary. The
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coupled rotor and stabilizer bar equations can be lumped into one first-order effective rotor
equation of motion (for both the lateral and longitudinal tip-path-plane flapping). The lin-
ear models accurately capture the vehicle dynamics for a relatively large region around the
nominal operating point. The model accurately predicts the vehicle angular rate response
for aggressive control inputs.

Following the work by Mettler, LaCivita et al. [28] developed a technique that makes use
of the frequency responses identified from multiple operating points, for the identification
of key parameters of a more broadly descriptive non-linear model. He applied the technique
to Yamaha R-50 helicopter using the hover and cruise data collected in [37]. The nonlinear
model with 30 states is linearized to permit a fit with the local frequency responses. It
was also shown that the reduced-order linearized model, similar to the one proposed by
Mettler [37], provides practically the same level of accuracy, further validating proposed
simple structure of a dynamic model for miniature helicopters.

The model has typical rigid body states with the quaternion attitude representation
used in order to enable simulation of extreme attitudes [46], two states for the lateral and
longitudinal flapping angles, one for the rotorspeed, and one for the integral of the ro-
torspeed tracking error. This last state comes from the governor action, modeled with a
proportional-integral feedback from the rotorspeed tracking error to the throttle command.
The model covers a large portion of the X-Cell’s natural flight envelope: from hover flight
to about 20 m/sec forward flight. The maximum forward speed corresponds to an advance
ratio µ = 0.15, which is considered as relatively low [44], and permits a number of as-
sumptions (e.g. thrust perpendicular to the rotor disk, see [6]). The cross-coupling effects
in the rotor hub were also shown to be negligible for this helicopter, which further sim-
plified model development. The mathematical model was developed using basic helicopter
theory, accounting for the particular characteristics of a miniature helicopter. Most of the
parameters were measured directly, several were estimated using data collected from simple
flight-test experiments, involving step and pulse responses in various actuator inputs. No
formal system identification procedures are required for the proposed model structure. The
model’s accuracy was verified using comparison between model predicted responses and
responses collected during flight test data. The model was also “flown” by an expert RC
pilot to determine how well it reproduces the piloted flying qualities.

Analytical linearization of the model with respect to forward speed was used to derive
simple linear models. These were subsequently used for a model-based design of the con-
trollers used for the automatic execution of aerobatic maneuvers. The actual aggressive
trajectories flown by the helicopter were adequately predicted by the simulation based on
the developed nonlinear model.

In the remainder of the chapter we provide a full list of model parameters with the
numerical values, dynamics equations of motion, and expressions for forces and moments
exerted on the helicopter by its components. Throughout the chapter we provided flight
test data to validate the model for various flight regimes, including aerobatics.

3.2 Helicopter parameters

The physical helicopter parameters used for our model are given in Table 3.1. The moments
of inertia around the aircraft body axes passing through the vehicle center of gravity were
determined using torsional pendulum tests [10]. The cross-axis moments of inertia are
hard to measure without a balancing device; and since they are usually small they were
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neglected. The X-Cell main and tail rotors, as well as the stabilizer bar, have symmetric
airfoils. The lift curve slopes of these surfaces were estimated according to their respective
aspect ratios [26]. The effective torsional stiffness in the hub was estimated from angular
rate responses to step commands in cyclic, as described in Section 3.4.1.

Note that in the table “m.r.” stands for the main rotor, “t.r.” stands for the tail rotor.

3.3 Equations of motion

The rigid body equations of motion for a helicopter are given by the Newton-Euler equations
shown below. Here the cross products of inertia are neglected.

u̇ = vr − wq − g sin θ + (Xmr +Xfus) /m
v̇ = wp− ur + g sinφ cos θ + (Ymr + Yfus + Ytr + Yvf ) /m
ẇ = uq − vp+ g cosφ cos θ + (Zmr + Zfus + Zht) /m
ṗ = qr(Iyy − Izz)/Ixx + (Lmr + Lvf + Ltr) /Ixx

q̇ = pr(Izz − Ixx)/Iyy + (Mmr +Mht) /Iyy

ṙ = pq(Ixx − Iyy)/Izz + (−Qe +Nvf +Ntr) /Izz

The set of forces and moments acting on the helicopter are organized by components:
()mr for the main rotor; ()tr for the tail rotor; ()fus for the fuselage (includes fuselage
aerodynamic effects); ()vf for the vertical fin and ()ht for the horizontal stabilizer. These
forces and moments are shown along with the main helicopter variables in Fig. 3-1. Qe is
the torque produced by the engine to counteract the aerodynamic torque on the main rotor
blades. The helicopter blades rotate clockwise when viewed from above, therefore Qe ≥ 0.
In the above equations we assumed that the fuselage center of pressure coincides with the
c.g., therefore the moments created by the fuselage aerodynamic forces were neglected.
The rotational kinematic equations were mechanized using quaternions [46]. The inertial
velocities are derived from the body-axis velocities by a coordinate transformation (flat
Earth equations are used), and integrated to obtain inertial position. A 4th order Runge-
Kutta integration method is used, with an integration step of 0.01 seconds.

3.4 Component forces and moments

3.4.1 Main rotor forces and moments

Thrust

For the main rotor thrust we assumed that the inflow is steady and uniform. According to
Padfield [44, p. 126], the time constant for settling of the inflow transients at hover is given
by

τλ =
0.849

4λtrimΩmr
(3.1)

For our helicopter the induced velocity at hover trim condition can be determined from
simple momentum theory:

Vimr =
√

mg

2ρπR2
mr

= 4.2 m/sec (3.2)
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Table 3.1: Parameters of MIT Instrumented X-Cell 60 SE Helicopter
Parameter Description
m = 8.2 kg helicopter mass
Ixx = 0.18 kg m2 rolling moment of inertia
Iyy = 0.34 kg m2 pitching moment of inertia
Izz = 0.28 kg m2 yawing moment of inertia
Kβ = 54 N·m/rad hub torsional stiffness
γfb = 0.8 stabilizer bar Lock number
Bnom

δlat
= 4.2 rad/rad lateral cyclic to flap gain at nominal rpm

Anom
δlon

= 4.2 rad/rad longitudinal cyclic to flap gain at nominal rpm
Kµ = 0.2 scaling of flap response to speed variation
Ωnom = 167 rad/sec nominal m.r. speed
Rmr = 0.775 m m.r. radius
cmr = 0.058 m m.r. chord
amr = 5.5 rad−1 m.r. blade lift curve slope
Cmr

D0
= 0.024 m.r. blade zero lift drag coefficient

Cmr
Tmax

= 0.0055 m.r. max thrust coefficient
Iβmr = 0.038 kg m2 m.r. blade flapping inertia
Rtr = 0.13 m t.r. radius
ctr = 0.029 m t.r. chord
atr = 5.0 rad−1 t.r. blade lift curve slope
Ctr

D0
= 0.024 t.r. blade zero lift drag coefficient

Ctr
Tmax

= 0.05 t.r. max thrust coefficient
ntr = 4.66 gear ratio of t.r. to m. r.
nes = 9.0 gear ratio of engine shaft to m. r.
δtrim
r = 0.1 rad t.r. pitch trim offset
Svf = 0.012 m2 effective vertical fin area
Cvf

Lα
= 2.0 rad−1 vertical fin lift curve slope

εtrvf = 0.2 fraction of vertical fin area exposed to t.r. induced velocity
Sht = 0.01 m2 horizontal fin area
Cht

Lα
= 3.0 rad−1 horizontal tail lift curve slope

P idle
eng = 0.0 Watts engine idle power
Pmax

eng = 2000.0 Watts engine max power
Kp = 0.01 sec/rad proportional governor gain
Ki = 0.02 1/rad integral governor gain
fs

p = 12.5 Hz rolling resonance frequency of the suspension system
fs

q = 9.0 Hz pitching resonance frequency of the suspension system
fs

r = 9.6 Hz yawing resonance frequency of the suspension system
ξs = 0.05 damping ratio of the suspension system material
Sfus

x = 0.1 m2 frontal fuselage drag area
Sfus

y = 0.22 m2 side fuselage drag area
Sfus

z = 0.15 m2 vertical fuselage drag area
hmr = 0.235 m m.r. hub height above c.g.
ltr = 0.91 m t.r. hub location behind c.g.
htr = 0.08 m t.r. height above c.g.
lht = 0.71 m stabilizer location behind c.g.
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Figure 3-1: Moments and forces acting on helicopter

The tip speed of the main rotor is V tip
mr = ΩmrRmr = 125.7 m/sec, from which the inflow

ratio is λimr = Vimr/V
tip
mr = 0.033. Therefore the time it takes for the inflow to settle

is τλ = 0.038 sec, which is significantly faster than the rigid body dynamics. During the
maneuvers requiring large thrust variations the time constant may change substantially.
However, as shown in the section on the main rotor flapping dynamics, the X-Cell cyclic
control authority is dominated by the hub torsional stiffness, which makes the modeling of
the inflow transients less critical.

A momentum theory based iterative scheme given by Padfield [44, p. 123] was adapted
to compute the thrust coefficient and inflow ratio as a function of airspeed, rotor speed and
collective setting. We neglect the flapping angles in the computation of the rotor thrust.
The blades of the main rotor have no twist. The influence of the cyclics and the roll rate
on thrust are of second order for our advance ratio range µ < 0.15, and were neglected
as well. We also introduced an empirically determined maximum thrust coefficient, since
momentum theory does not take into account the effect of blade stall.

The thrust coefficient is given by (omitting the “mr” index):

CT =
T

ρ (ΩR)2 πR2
(3.3)

where T is the main rotor thrust. Then the following system of equations can be solved
iteratively:

λ0 =
CT

2ηw

√
µ2 + (λ0 − µz)

2
(3.4)

Cideal
T =

aσ

2

(
θ0

(
1
3

+
µ2

2

)
+
µz − λ0

2

)
(3.5)
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CT = {
Cideal

T if − Cmax
T ≤ Cideal

T ≤ Cmax
T

−Cmax
T if Cideal

T < −Cmax
T

Cmax
T if Cmax

T < Cideal
T

(3.6)

Cmax
T =

Tmax

ρ (ΩR)2 πR2
(3.7)

Here

µ =
√

(u− uwind)2 + (v − vwind)2

ΩR
- advance ratio

µz =
w − wwind

ΩR
- normal airflow component

σ =
2c
πR

- solidity ratio

a − lift curve slope
θ0 − commanded collective angle
ηw − coefficient of non-ideal wake contraction

Tmax = 2.5 mg - maximum rotor thrust

Based on momentum theory, the rotor wake far downstream contracts by a factor of two [44,
p. 116]. We introduced a coefficient ηw to account for non-ideal wake contraction and the
power lost due to the non-uniform velocity and pressure distribution in the wake. We have
approximated this coefficient to be ηw = 0.9. Hence, the iterative scheme given in [44, p.
123] is modified as follows. First, define the zero function:

g0 = λ0 −
CT

2ηwΛ1/2
,where

Λ = µ2 + (λ0 − µz)
2

and thrust coefficient CT is given by Eq. (3.5). Apply Newton’s iterative scheme:

λ0j+1 = λ0j + fjhj

(
λ0j

)
hj = −

(
g0

dg0/dλ0

)
λ0=λ0j

An explicit expression for hj :

hj = −

(
2ηwλ0jΛ

1/2 − CT

)
Λ

2ηwΛ3/2 + aσ
4 Λ− CT

(
µz − λ0j

)
Padfield [44, p. 123] suggests a constant value of the convergence rate coefficient fj = 0.6.

Note that at hover the denominator of Eq. (3.4) is zero when the vertical velocity is equal
to the inflow velocity. This condition corresponds to a vortex-ring state, which can not be
modeled adequately by the momentum theory. Instead, the denominator is numerically
separated from zero. In general, this condition is avoided in flight because it leads to a loss

36



of control. We have to keep in mind that the simulation does not adequately represent the
helicopter dynamics when vortex-ring conditions exist on either the main or the tail rotor.
Furthermore, strictly speaking the momentum theory applies only to a fully developed
steady state flow in ascending flight. Empirical corrections for descending flight, cited by
Padfield [44, p. 118], could be used to make thrust prediction somewhat more accurate.

The momentum theory approach was previously shown to be adequate for estimating
steady state main rotor thrust both at hover and in fast forward flight. Results of the
wind tunnel tests with a 5 ft diameter rotor are given by Harris [21] and summarized by
Bramwell [2, pp. 109-114]. It was shown that the blade lift curve slope coefficient a can be
determined from experiments such that the momentum theory accurately predicts thrust
for a wide range of advance ratios and collective pitch angles. To test the applicability of
momentum theory-based thrust calculation to transient response, we gathered flight data
for collective pitch pulse responses at hover. At hover, the vertical acceleration can be
represented by a linear relation:

az = Zww + Zcolδcol (3.8)

The vertical speed damping stability derivative Zw and the collective pitch control derivative
Zcol can be obtained analytically by linearization of the momentum theory equations [44,
pp. 219, 229]. For hover:

Zw = −ρ (ΩR)πR2

m

2aσλ0

16λ0 + aσ
(3.9)

Zcol = −ρ (ΩR)2 πR2

m

8
3

aσλ0

16λ0 + aσ
(3.10)

We used the same value for the blade lift curve slope as determined for the particular airfoil
used in the tests summarized by Harris [21], a = 5.5. This value is consistent with the
high aspect ratio of the main rotor blades, if the blades are considered as a wing [26]. The
mean values were subtracted from the collective command and the vertical acceleration
measurement; the signals were filtered with a first order low-pass filter with time constant
of 0.2 seconds. The digital models of the analog low-pass filter and the servomechanism
were applied to the collective command for consistency. Figure 3-2 shows the comparison of
the computed vertical acceleration from Eq. (3.8) and actual acceleration. As can be seen,
the model, based on linearization of the momentum theory, agrees well with flight data.

Torque

The main rotor torque can be approximated as a sum of induced torque due to generated
thrust, and torque due to profile drag on the blades [44, p. 116]:

CQ =
Q

ρ (ΩR)2 πR3
= CT (λ0 − µz) +

CD0σ

8

(
1 +

7
3
µ2
)

(3.11)

where CQ is the torque coefficient, CD0 is the profile drag coefficient of the main rotor blade.
The profile drag is not significantly affected by changes in the collective setting. Thus, the
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Figure 3-2: Modeling vertical acceleration response at hover

yawing moment produced by the main rotor is given by

Qmr = CQρ (ΩR)2 πR3 (3.12)

Our estimate for profile drag coefficient of the main rotor blade is CD0 = 0.024. Underes-
timation of the profile drag coefficient would lead to overprediction of the main rotor speed
in windmilling flight conditions, which occur during autorotation and some agile maneuvers.

Except for the hover condition, the rotor in-plane force, which contributes to the drag
and sideforce, is substantially smaller than the drag provided by the fuselage and the side-
force from the fuselage and the empennage. This force was neglected in the calculations;
effectively it was lumped with the fuselage forces, estimated in Section 3.4.3. The moments
due to the in-plane force are much smaller than those due to the blade flapping, since the
torsional stiffness of the hub retention is high on the X-Cell.

Main rotor moments and flapping dynamics

The main rotor flapping angle β can be represented as a Fourier series of the blade azimuth
angle ψ, with only the first three coefficients retained [44, p. 32]:

β(ψ) = a0 + a1 cosψ + b1 sinψ (3.13)

Flapping of the teetering stabilizer bar can be represented by a similar equation without
the constant term since no coning takes place:

βs(ψ) = a1s sinψ + b1s cosψ (3.14)
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Stabilizer bar flapping contributes to the change of the main rotor blade pitch angle through
a mechanical linkage:

θ(ψ) = θ0 + θlon sinψ + θlat cosψ + ksβs (3.15)

The swashplate deflections change the cyclic pitch angle of both the main rotor and the
stabilizer bar. Coupled second-order differential equations can be developed for Fourier
coefficients of the main rotor and stabilizer bar flapping. It can be shown [44, pp. 33-35]
that the undamped natural frequency of the flapping motion is close to the rotorspeed Ωmr,
and the damping ratio can be approximated by γ/8, where γ is the Lock number of the
blades being considered (main rotor or stabilizer bar). The Lock number represents the
ratio of aerodynamic to inertial forces and is defined as

γ =
ρcaR4

Iβ
(3.16)

For the main rotor blades the Lock number is relatively high, γmr ≈ 3.7, therefore the
flapping motion is well damped. For a step response this corresponds to the settling time
(to within 5 percent of the steady state value) of 24/γΩ = 0.039 seconds. For the stabilizer
bar, with its small aerodynamic surfaces, the Lock number is low, γfb ≈ 0.8, and the corre-
sponding settling time is 0.144 seconds. Earlier work on modeling of small-scale rotorcraft
with Bell-Hiller stabilizer bars [40, 37, 28] showed that the main rotor and stabilizer bar
flapping dynamics can be lumped and represented by tip-path plane (TPP) flapping dy-
namics with only two states. This result was based on frequency-domain identification and
comparison of reduced and full order transfer functions for attitude dynamics. Furthermore,
coupling of the lumped flapping dynamics and rigid body pitch and roll motions leads to
pronounced second-order characteristics [52, 49, 37, 28]. These modes are lightly damped,
and should be explicitly accounted for in designing high-bandwidth attitude or rate control
systems [39, 38]. We represented the lateral and longitudinal flapping dynamics by the
first-order equations:

ḃ1 = −p− b1
τe
− 1
τe

∂b1
∂µv

v − vw

ΩR
+
Bδlat

τe
δlat (3.17)

ȧ1 = −q − a1

τe
+

1
τe

(
∂a1

∂µ

u− uw

ΩR
+
∂a1

∂µz

w − ww

ΩR

)
+
Aδlon

τe
δlon, (3.18)

where Bδlat
and Aδlon

are effective steady-state lateral and longitudinal gains from the cyclic
inputs to the main rotor flap angles; δlat and δlon are the lateral and longitudinal cyclic con-
trol inputs (pilot stick or control system outputs); uw, vw and ww are the wind components
along, respectively, X, Y and Z helicopter body axes; τe is the effective rotor time constant
for a rotor with the stabilizer bar. Frequency-domain identification showed that the pitch
and roll cross-coupling flapping coefficients are approximately an order of magnitude less
than the direct coefficients for the X-Cell [37], and were neglected. This result holds for
large-amplitude inputs as well. For example, during an axial roll maneuver the pitch rate
remains close to zero with no pilot compensation, similarly to the roll rate during a loop.
This natural decoupling of the cyclic responses makes the X-Cell a particularly attractive
helicopter for aerobatics.

The dominant rotor moments are the control moments produced by the rotor flapping.
In the following we describe the moments in the roll direction (resulting from the lateral
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Figure 3-3: Rotor moments acting on the helicopter fuselage

TPP flapping b1). Figure 3-3 shows the rotor moments that are acting on the fuselage.
The first contribution results from the restraint in the blade attachment to the rotor head.
The restraint can be approximated using a linear torsional spring with a constant stiffness
coefficient Kβ ; resulting in a roll moment Mk,lat = Kβb1. The second contribution results
from the tilting of the thrust vector. Assuming that the thrust vector is perpendicular to the
TPP, the thrust vector will tilt proportionally to the rotor flapping angles. The moment arm
is the distance hmr between the rotor head and the helicopter center of gravity; resulting
in a lateral moment Mh,lat = Thmrb1. The total main rotor rolling moment, entering the
rigid body equations of motion, is represented by Eq. (3.19).

Lmr = (Kβ + Thmr) b1 (3.19)

Similarly, the pitching moment is given by Eq. (3.20).

Mmr = (Kβ + Thmr) a1 (3.20)

To determine the parameters entering the flapping equations, we can split up the problem
into ”slow” and ”fast” dynamics. First, we can notice that the dihedral derivatives are
important only at the low-frequency spectrum of the dynamics. At high frequencies (above
0.5 Hz) the transfer functions from cyclic inputs to angular rates can be approximated by
second-order transfer functions, derived by omitting the translational flapping derivatives
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in Eqs. (3.17)-(3.18) and combining it with Eqs. (3.19)-(3.20):

q

δlon
≈ Aδlon

τe

ω2
nq

s2 + 1/τes+ ω2
nq

(3.21)

p

δlat
≈ Bδlat

τe

ω2
np

s2 + 1/τes+ ω2
np

(3.22)

Pitching dynamics in fast forward flight is significantly influenced by the horizontal tail,
which provides a stabilizing effect, and the main rotor flapping due to vertical speed, which
provides a destabilizing effect. Therefore the longitudinal cyclic to pitch rate transfer func-
tion given in Eq. (3.21) is valid in low-speed flight only. Here the undamped natural
frequencies of the longitudinal and lateral fuselage-rotor modes are:

ωnq =

√
Tmrhmr +Kβ

Iyy

ωnp =

√
Tmrhmr +Kβ

Ixx

Note that for hover and straight and level flight Tmr ≈ mg. The distance between the main
rotor hub and the helicopter center of gravity can be measured. The moments of inertia were
determined with the torsional pendulum tests [10]. The natural frequencies of the lightly
damped second-order systems can be easily determined by counting oscillation periods in a
recorded step response, thereby providing an estimate of the hub torsional stiffness. These
parameters are given in Table 3.1. An approximate value of the damping time constant for
the flapping motion [37] is given in Eq. (3.23)

τe =
16

γfbΩmr
≈ 0.1 sec (3.23)

Note that the damping is proportional to the stabilizer bar Lock number, making it small.
The steady-state cyclic to rate gains depend on the swashplate gearing. Experiments have
also indicated that the values of Bδlat

and Aδlon
grow with the rotor speed. We approximated

this effect as a function of effective dynamic pressure, or square of the rotor speed:

Bδlat
= Bnom

δlat

(
Ω

Ωnom

)2

rad/rad

Aδlon
= Anom

δlon

(
Ω

Ωnom

)2

rad/rad

Ωnom = 167 rad/sec

These gains were determined by matching DC gain of the angular rate responses to steps
in cyclics. Final verification of the derived parameters is provided by simulation of the
linear systems described in Eq. (3.21) and (3.22), and comparison with the flight-test data.
Figure 3-4 shows the actual and simulated roll rates for a segment including an axial roll
maneuver. The helicopter undergoes negative rotor loading during inverted portion of
the maneuver, leading to 15 percent lower roll rate in that segment than predicted by
the simplified linear model. Figure 3-5 shows the actual and simulated pitch rates for
a segment of 15 m/sec forward flight with pulse commands on longitudinal cyclic. Note
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Figure 3-4: Actual and model roll rate response during axial roll maneuver

that the linearized models of angular rate dynamics are adequate for both small and large
amplitude motion.

The flapping due to translational velocity is described by the flapping derivatives ∂a1/∂µ
and ∂b1/∂µv. The longitudinal flapping due to the forward speed increase is caused by an
increased lift on the advancing blade with respect to the retreating blade, which turns
into a flap-back moment on the main rotor due to the 90 degree gyroscopic phase lag. A
theoretical value for the steady-state longitudinal flapping for a rotor without a stabilizer
bar is given by [2, p. 107]

a1 =
2µ (4δcol/3− λ0)

1 + 3µ2/2
≈ 2µ (4δcol/3− λ0) (3.24)

While this expression is valid for a teetering rotor at hover, theoretical approximation for
a hingeless rotor without a stabilizer bar is very close [44]. The stabilizer bar dramatically
reduces flapping response to gusts, and Eq. (3.24) can not be used for predicting dihedral
effect on a rotor equipped with one. Since this derivative plays a primary role in the
frequency and damping of the phugoid mode, which is very slow, it is difficult to estimate
with the frequency domain identification methods [37]. An open loop excitation would have
to last for much longer than it takes for the helicopter to diverge, therefore the necessary
pilot’s feedback would bias an estimate of the derivative [31]. We introduced a scaling
coefficient in Eq. (3.24), and linearized it to yield

∂a1

∂µ
= 2Kµ

(
4δcol

3
− λ0

)
(3.25)
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Figure 3-5: Actual and model pitch rate response in low-speed flight

A rough estimate for the scaling coefficient Kµ can be obtained by matching the steady-
state cyclic input in forward flight at constant speed (maintained with the velocity-tracking
feedback controller) with that predicted by the simulation in the same conditions. Our
estimate for X-Cell 60 yielded Kµ = 0.2, which tells us that the stabilizer bar reduces
steady-state flapping response to forward speed by a factor of 5. From Eq. (3.24) and the
rotor symmetry we conclude that the longitudinal and lateral dihedral derivatives are equal
in magnitude, and in both cases cause the rotor to flap away from the incoming air.

∂b1
∂µv

= −∂a1

∂µ
(3.26)

Positive Z-axis velocity causes higher lift on advancing blade, which results in a flap-back
of the rotor; this effect is captured by the stability derivative ∂a1/∂µz in Eq. (3.17). An
analytical estimate of the derivative is adapted [2, p. 159] to accommodate backward flight,
and scaled by the same coefficient Kµ to reflect the effect of the stabilizer bar:

∂a1

∂µz
= Kµ

16µ2

(1− µ2/2) (8 |µ|+ aσ)
sign µ ≈ Kµ

16µ2

8 |µ|+ aσ
sign µ (3.27)

Rotor forces

For small advance ration flight (µ < 0.15) we can assume that the thrust vector is per-
pendicular to the TPP. The small flapping angles (below 10 degrees) allow us to use linear
approximation for the main rotor force components along the helicopter body axes. As
was stated above, the in-plane rotor force was lumped with the fuselage forces, and is not
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accounted for in the equations below.

Xmr = −Tmra1

Ymr = Tmrb1

Zmr = −Tmr

3.4.2 Engine, governor and rotorspeed model

The rotorspeed dynamics is modeled by the following equation:

Ω̇ = ṙ +
1
Irot

[Qe −Qmr − ntrQtr] (3.28)

where Qe is the engine torque (positive clockwise), Qmr = CQρ(ΩR)2πR3 is the main rotor
torque (positive counterclockwise), Qtr is the tail rotor torque, ntr is the tail rotor gear
ratio, Irot is the total rotating inertia referenced to the main rotor speed, and Ω is the
rotorspeed. The engine torque depends on the throttle setting δt and rotorspeed, and is
usually represented by engine maps, or look-up tables. The maps for the engine were not
available, and a simplified representation of the engine torque is suggested. Assume that
engine power is proportional to the throttle setting:

Pe = Pmax
e δt (3.29)

where 0 < δt < 1. Then the torque is

Qe =
Pe

Ω
(3.30)

The engine torque response to throttle changes can be considered instantaneous, since the
time lags associated with air intake, fuel flow and combustion are very small compared to
vehicle dynamics.

In the absence of manufacturer data, the governor can be modeled as a proportional-
integral feedback controller, maintaining commanded rotorspeed by changing the throttle:

δt = Kp · (Ωc − Ω) +Ki · ωi (3.31)
ω̇i = Ωc − Ω

where Ωc is the rotorspeed command, Kp and Ki are proportional and integral feedback
gains. The anti-windup logic resets the integrator state value ωi in case computed throt-
tle command is saturated. Throttle servo dynamics is much faster than the rotorspeed
dynamics, and was neglected in the model.

To determine the parameters of the given engine/governor model, we analyzed time
response to the rotorspeed step command. Let us linearize Eqs. (3.28)-(3.31) around a
nominal operating point, for example hovering flight, neglecting the yawing acceleration
and the tail rotor torque. The states of the linear system will be the rotorspeed deviation
from the nominal ω and an integral of the rotorspeed tracking error ωi. The inputs are ωc

- a variation of the rotorspeed command, and δc - a variation of the collective angle from
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the trim setting. The resulting linear system is given in Eq. (3.32).

d

dt

[
ω
ωi

]
=

[
− 1

ΩIrot

(
3Q0

mr + Pmax
e Kp

) P max
e Ki

ΩIrot

−1 0

] [
ω
ωi

]
+ (3.32)

+

[
P max

e Kp

ΩIrot
− 1

IrotCQ

∂CQ

∂δc
Q0

mr

1 0

] [
ωc

δc

]

From Eq. (3.11) the main rotor torque at hover Q0
mr can be computed, and for the X-Cell

with the parameters given in Table 3.1 Q0
mr ≈ 6.3 Nm. The characteristic polynomial of

the system is given in Eq. (3.33).

χ(λ) = λ2 + λ
3Q0

mr + Pmax
e Kp

ΩIrot
+
Pmax

e Ki

ΩIrot
(3.33)

To estimate the coefficients of the characteristic polynomial we performed the following
test [47]. The helicopter was kept at hover at 1600 rpm, and a 100 rpm step input in
rotorspeed was commanded to the governor from a remote control. The rotorspeed mea-
surement was not available directly in the instrumentation package. Instead, we recorded
the sound of the engine with a hand-held camcorder. Next, a time-frequency decompo-
sition analysis [11] was applied to determine frequency content of the engine noise as a
function of time. In such an analysis a signal of limited duration and frequency, called a
wavelet, defined by its central frequency and width, is convoluted in the time domain with
the data. The output in the time domain will have a larger magnitude when the wavelet’s
central frequency is present in the signal than when the central frequency is missing. The
spectral content of the signal as a function of time can then be determined by repeating
this computation over a range of frequencies. Many frequency bands appear in the sound
spectrum of the engine noise, representing harmonics. Figure 3-6 (top) shows the result
of the Morlet wavelet time-frequency analysis performed on the engine noise during a step
change in RPM setting; two harmonics are indicated. The same behavior appears on each
harmonic, providing the opportunity to fine-tune the model to a number of step-responses,
thereby reducing measurement error due to external noise. The governor/engine system
was approximated with a second order system, whose response to a commanded RPM step
input appears at the bottom of Figure 3-6. The system’s damping ratio is ζ = 0.63 and
its natural frequency is ωn = 1.3 rad/sec. By matching the coefficients of the characteristic
polynomials we obtain the expressions given in Eq. (3.34).

2ζωn =
3Q0

mr + Pmax
e Kp

ΩIrot
(3.34)

ω2
n =

Pmax
e Ki

ΩIrot

A total kinetic energy of all rotating components is 2IβmrΩ
2 + Ies(nesΩ)2 + 2Iβtr(ntrΩ)2 =

(2Iβmr + Iesn
2
es + 2Iβtrn

2
tr)Ω

2, where Iβmr and Iβtr are, respectively, the main and the tail
rotor blade inertias, Ies is the inertia of the engine shaft and all components rotating at the
engine speed, ntr is the tail rotor gear ratio, and nes is the engine gear ratio. Therefore the
rotating inertia referenced to the main rotor speed can be represented as Irot = 2Iβmr +
Iesn

2
es +2Iβtrn

2
tr. The most important contribution comes from the main rotor blades. The
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Figure 3-6: (top) Two frequency bands in the engine noise spectrum; (bottom) Simulated
response to rotorspeed step command

tail rotor inertia, after scaling with the gear ratio squared, amounts to 5 percent of the main
rotor inertia. The rotating inertia referenced to the engine speed is harder to estimate, but
an upper bound can be found by estimating the total mass of rotating components (0.2 kg)
and its effective radius of inertia (0.04 m). We thus arrived at an estimate for Irot equal
to 2.5 inertias of the main rotor blade. Using this value, and matching coefficients of the
characteristic polynomial according to Eq. (3.34) we obtained estimates for the proportional
and integral governor gains. The model could be further refined if real-time rotorspeed data
were available, or the actual governor gain and the engine maps were available from the
manufacturer datasheets.

This engine/governor model is simplified. However, it reflects the trends which are
important in some very aggressive maneuvers which involve large and rapid variation of the
aerodynamic torque on the rotor. First, tight governor feedback keeps the rotorspeed close
to the nominal setting. Second, an increase in the aerodynamic torque leads to a temporary
decrease in rotorspeed and a lagged application of the yawing torque to the airframe. The
reverse is true for windmilling flight, in which the rotor extracts energy from the air, and
leads to an increase in rotorspeed, and lagged decrease in torque applied to the airframe.
The inaccuracies in the model would probably preclude feedforward compensation of the
main rotor torque with the tail rotor; a tight yaw rate feedback to the tail rotor pitch is
much more efficient and is routinely used by R/C pilots in the form of a yaw gyro.
3.4.3 Fuselage forces

For hover flight and forward speeds well below the induced velocity at hover (≈ 4.5 m/sec
for X-Cell), the rotor downwash is deflected by the forward and side velocity. This deflection
creates a force opposing the movement. We can express the X and Y drag forces created
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by the fuselage in this flight regime by:

Xfus = Sfus
x

1
2
ρV 2

imr

u

Vimr

Yfus = Sfus
y

1
2
ρV 2

imr

v

Vimr

where Sfus
x and Sfus

y are effective drag areas of the fuselage in the X and Y directions.
When the forward speed is higher than the rotor induced velocity, the fuselage drag

can be modeled as the drag of a flat plate exposed to dynamic pressure. In this case the
perturbations to the fuselage forces can be expressed as:

Xfus = Sfus
x

1
2
ρU2

e

u

Ue

Yfus = Sfus
y

1
2
ρU2

e

v

Ue

where Ue is the trim airspeed.
Considering the above equations, fuselage forces can be approximated by

V∞ =
√
u2

a + v2
a + (wa + Vimr)

2

Xfus = −0.5ρSfus
x uaV∞

Yfus = −0.5ρSfus
y vaV∞

Zfus = −0.5ρSfus
z (wa + Vimr)V∞

where Sfus
x , Sfus

y and Sfus
z are effective frontal, side and vertical drag areas of the fuselage,

ua, va and wa are fuselage center of pressure velocities with respect to air (i.e. ua = u−uw,
where uw is the projection of wind velocity vector on the X body axis). We neglect small
moments generated by the fuselage, and assume that the fuselage center of pressure coincides
with the helicopter center of gravity. Based on the fuselage projection areas, we can assume
that Sfus

y ≈ 2.2Sfus
x , Sfus

z ≈ 1.5Sfus
x . Effective frontal drag area can be determined from the

average pitch angle required to maintain a certain forward speed. This is best done under
automatic control in velocity hold mode. In a steady trimmed flight mgθ ≈ −0.5ρU2Sfus

x .
A pitch angle of -10 degrees was required to maintain 14.5 m/sec forward speed, which
resulted in the estimate Sfus

x = 0.1 square meters.

3.4.4 Vertical fin forces and moments

We approximated the sideforce produced by the vertical fin by:

Yvf = −0.5ρSvf

(
Cvf

Lα
V tr
∞ + |vvf |

)
vvf (3.35)

where Svf is the vertical fin area, Cvf
Lα

is its lift curve slope, V tr
∞ =

√
ua · ua + wtr · wtr is

the axial velocity at the location of the tail rotor hub. vvf is the side velocity relative to air
at the location of the vertical fin, wtr is the vertical velocity (same as for the tail rotor):

vvf = va − εtrvfVitr − ltrr (3.36)
wtr = wa + ltrq −Kλ · Vimr (3.37)
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Here Vitr is the induced velocity of the tail rotor (see Eq. (3.50)), r is yaw rate, εtrvf is the
fraction of the vertical fin area exposed to full induced velocity from the tail rotor, ltr is
the vertical distance between the c.g. and tail rotor hub, which is about the same distance
to the center of pressure of the vertical fin, Vimr - main rotor induced velocity, Kλ - wake
intensity factor, calculated in the tail rotor section.

To accommodate for stall of the vertical fin [35], the absolute value of the vertical fin
side force is limited by:

|Yvf | ≤ 0.5ρSvf

((
V tr
∞

)2
+ v2

vf

)
(3.38)

The vertical fin sideforce creates a yawing moment and a small rolling moment due to the
offsets from the c.g.:

Nvf = −Yvf ltr

Lvf = Yvfhtr

3.4.5 Horizontal stabilizer forces and moments

The destabilizing effect of the main rotor flapping due to vertical speed is offset by the
weathervaning provided by the horizontal tailplane. The horizontal tail produces lift and a
stabilizing pitching moment around the center of gravity. An effective vertical speed at the
horizontal tail location is determined, assuming that the stabilizer may be fully or partially
submerged in the downwash of the main rotor:

wht = wa + lhtq −Kλ · Vimr (3.39)

The same wake intensity factor is used for the horizontal fin as for the vertical fin and the
tail rotor. Next, the Z-force generated by the horizontal stabilizer is determined according
to:

Zht = 0.5ρSht

(
Cht

Lα
|ua|wht + |wht|wht

)
(3.40)

where Sht is the horizontal stabilizer area, Cht
Lα

= 3.0 is its lift curve slope. To accommodate
for the stall of the horizontal stabilizer [35], the absolute value of the horizontal stabilizer
lift is limited by:

|Zht| ≤ 0.5ρSht

(
u2

a + w2
ht

)
(3.41)

Finally, the pitching moment generated by the horizontal stabilizer is

Mht = Zht · lht (3.42)

3.4.6 Tail rotor

The tail rotor is subjected to a wide range of flow conditions, including those where the
thrust-inflow iteration algorithm (given for the main rotor in Eqs. (3.4) and (3.5)) would
fail (e.g. when the tail rotor operates in its own wake at a low in-plane airspeed). We have
linearized the thrust-inflow iteration equations for the tail rotor around the trim conditions
corresponding to a no-sideslip flight at a range of forward speeds. The tail rotor thrust
at such trim conditions is always non-zero to compensate for the main rotor torque, zero
sideslip implies that there is no airflow component normal to the rotor disk, therefore Eqs.
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(3.4) and (3.5) are applicable.

Ctr
T

µtr
z

=
∂Ctr

T

∂µtr
z

(
|µtr| , µtr

z = 0, δtrim
r

)
(3.43)

Ctr
Tδr

=
∂Ctr

T

∂δr

(
|µtr| , µtr

z = 0, δtrim
r

)
(3.44)

The partial derivatives in Eqs. (3.43) and (3.44) were computed numerically. Simple approx-
imate analytical expressions for the tail rotor coefficients can be obtained by adapting those
used for the main rotor coefficients [44, pp. 219, 229]. They fall within 15 percent of those
computed via numerical or exact analytical linearization. The resulting non-dimensional
coefficients were used to calculate the corresponding dimensional stability derivatives:

Y tr
v = −Ctr

T
µtr

z

ftρΩtrRtrπR
2
tr

m
(3.45)

Y tr
δr

= −Ctr
Tδr

ftρ (ΩtrRtr)
2 πR2

tr

m
(3.46)

where ft is the fin blockage factor, as suggested in [44, p. 142]:

ft = 1.0− 3
4
Svf

πR2
tr

The tail rotor speed is given by Ωtr = ntrΩmr , where ntr is the gear ratio given in Table 3.1.
For reference, the computed dimensional derivatives are provided in Figures 3-7 and 3-8.
Finally, the sideforce generated by the tail rotor is given in Eq. (3.47):

Ytr = mY tr
δr
δr +mY tr

v µtr
z ΩtrRtr (3.47)

In order to calculate Ytr, we need to determine the normal (µtr
z ) and the in-plane (µtr)

tail rotor inflow components. The main rotor wake affects the tail rotor thrust in a complex
way; to model this influence accurately an extensive modeling of the wake is required.
We decided to approximate just the increase in an apparent in-plane velocity seen by the
tail rotor. For this, determine the main rotor wake intensity factor Kλ. The geometry
calculations are equivalent to those given in [30], but computationally more efficient since
an explicit evaluation of the trigonometric functions is avoided. Calculate the following
variables (tangents of the angles determining the geometry):

gi =
ltr −Rmr −Rtr

htr

gf =
ltr −Rmr +Rtr

htr

First, the tail rotor is out of the downwash if Vimr ≤ wa, in which case there is an effective
upwash. Next, at low enough forward speed with respect to air the tail rotor is out of the
wake as well. This can be represented by the condition:

ua

Vimr − wa
≤ gi
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Figure 3-7: Linearized tail rotor sideforce due to side velocity
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Figure 3-8: Linearized tail rotor sideforce due to tail rotor pitch
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In both of these cases Kλ = 0. The tail rotor is fully in the wake if:

ua

Vimr − wa
≥ gf (3.48)

In the far wake the downwash is twice the value at the rotor. We assume that Kλ = 1.5
when the tail rotor is fully immersed. In the remaining case, when the tail rotor is partially
immersed, we assume a linear growth of the wake intensity factor with the forward speed:

Kλ = 1.5
ua

Vimr−wa
− gi

gf − gi
(3.49)

The derived expression is used to calculate the vertical component of airspeed at the tail
rotor location, as shown in Eq. (3.37). Next, determine an advance ratio for the tail rotor:

µtr =
u2

a + w2
tr

Ωtr ·Rtr

Velocity component normal to the tail rotor is given by:

vtr = va − ltr · r + htr · p

and in nondimensional form:

µztr =
vtr

Ωtr ·Rtr

The magnitude of the resulting tail rotor thrust is limited based on the assumed maxi-
mum thrust coefficient to model stall of the blades and other viscous losses.

Y tr
max = ftC

tr
Tmax

ρ (ΩtrRtr)
2 πR2

tr

|Ytr| ≤ Y tr
max

The yawing and small rolling moments due to offsets from the c.g. are computed as
follows:

Ntr = −Ytrltr

Ltr = Ytrhtr

We need to compute the tail rotor induced velocity, used in the calculation of the vertical
fin side force (see Eq. (3.36)). Using the same derivation as for the main rotor [44, pp.
115-123], the inflow ratio is approximated by Eq. (3.50).

λtr
0 = µztr − 2

[
2Ctr

T

atrσtr
− δr

(
1
3

+
µ2

tr

2

)]
(3.50)

where Ctr
T is the computed tail rotor thrust coefficient, atr is the tail rotor blade lift curve

slope given in Table 3.1, σtr = 2ctr
πRtr

is the tail rotor solidity ratio.

Finally, the tail rotor torque Qtr is computed similarly to Eq. (3.11) and (3.12) using
the tail rotor parameters in place of the main rotor parameters.
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3.5 Actuator models

The command ranges for the cyclics and collective blade pitch are symmetric around the
center point. The tail rotor blade pitch is offset by the trim value given in Table 3.1, such
that the tail rotor pitch is computed as

δr = δcmd
r + δtrim

r (3.51)

The following maximum commanded deflections were set, in radians:

δmax
lat = 0.096
δmax
lon = 0.096
δmax
col = 0.183
δmax
rcmd

= 0.38

Here δmax
lat and δmax

lon are actual maximum cyclic pitch angles of the main rotor blades,
measured statically. The gearing between servos and pitch angles of control surfaces is close
to being linear. Linear functions are used to relate servo pulsewidth commands to control
surface deflections. Look up tables can be used for a different gearing. Hobby servos and
pulsewidth generation electronics used on the helicopter result in significant quantization
effects. On average 150 steps were used to encode rail-to-rail deflection of each control
surface. This results, for example, in a tail rotor command quantization of 0.3 degrees.
Linear transfer functions are used to model the servo dynamics. Futaba S9402 servos,
used for collective and cyclic deflections of the main rotor blades, were subjected to small-
amplitude frequency sweeps under 35 oz·in mean load and small inertia, which we assume is
representative of the actual loads experienced by the servos during the flight. The following
transfer function came up as a result:

Hservo(s) =
s/Tz + 1
s/Tp + 1

ω2
n

s2 + 2ζωns+ ω2
n

where Tz = 104 sec, Tp = 33 sec, ωn = 36 rad/sec, and ζ = 0.5. Note that 90 deg phase
lag occurs at roughly 30 rad/sec, which also imposes a limitation on the control system
bandwidth. A fast digital servo (Futaba S9450) was used for the tail rotor pitch. Since
the torque required from the tail rotor servo is much lower than that required from the
swashplate actuators, no-load small-signal bandwidth tests provide an adequate model of
the servo. As a result of the tests, the servo transfer function was approximated by a second
order system with the undamped natural frequency of 7 Hz and the damping ratio of 0.6.

3.6 Sensor models

3.6.1 Inertial measurement unit

The vast majority of unmanned helicopter control systems use angular rate gyros and
accelerometers, with a notable exception of GPS-only control system developed at Stanford
University. These sensor readings may include additional lags in the feedback path. The
lags are due to analog anti-aliasing filters and suspension system dynamics [47]. A soft
suspension system with the center of gravity of the suspended assembly offset from the
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elastic center may introduce substantial coupling. The frequency response of antialiasing
filters and suspension system can be easily measured. The suspension system rotational
dynamics was modeled by decoupled second order transfer functions to accurately represent
the resonant modes, which may lead to gain margin deficiency. In the case of the MIT X-Cell
helicopter the translational and rotational modes are largely decoupled, and translational
resonant frequencies are in the range of 13-18 Hz. The rotational resonant frequencies are:
12.5 Hz in roll, 9.2 Hz in pitch and 9.5 Hz in yaw. The frequencies of the suspension system
resonances represent a tradeoff between the vibration isolation requirements, which dictate
low frequency resonance, and the requirement for low interference with the rigid body
dynamics, which demands high frequencies. The translational dynamics of the helicopter is
at least an order of magnitude slower than translational dynamics of the suspension system.
On the other hand, rotational dynamics of the helicopter contains modes with natural
frequencies of 2-3 Hz ( coupled rotor-fuselage pendulum-like mode ), which necessitates
the modeling of the box rotational dynamics. Note that the rotational box movements
relative to the airframe introduce reciprocal moments on the helicopter. However, moments
of inertia of the box are two orders of magnitude less than the moments of inertia of the
airframe, therefore the reciprocal moments were neglected.

In the case of X-Cell the lowest vibration frequency related to the main rotor is 1 per
rev, around 27 Hz. Neoprene isolators were used, which have very low damping ratio (about
0.05), ensuring rapid 40 dB/decade attenuation at the cost of resonance peak amplification
factor of 10. For example vibratory input at the 1 per rev frequency in yaw is attenuated
by a factor (27/9.5)2 = 8. Additional attenuation of the vibratory input in the measured
signal is provided by the first-order analog antialiasing filters with the cut-off set at 9 Hz.
In hindsight, the cutoff frequency of the antialiasing filters was chosen unnecessarily low,
20 Hz cutoff would be sufficient to avoid aliasing.

In addition, accelerometer measurements are different from the center of gravity accel-
erations due to the IMU offset from the c.g.

am = acg + ω × ω ×Rm + ω̇ ×Rm (3.52)

where Rm is a vector representing IMU offset from center of gravity in body axes. This vec-

tor was determined from the flight data, and is given here in meters: Rm =
[

0.07 0.025 0.11
]T

.

The term ω × ω × Rm containing cross products of angular rates is small, while the term
ω̇×Rm involving the derivatives of angular rates contributes substantially to the accelerome-
ter measurements during maneuvers involving rapidly changing angular rates, e.g. frequency
sweeps. Note that in Eq. (3.52) ω and ω̇ represent vectors of angular rates and angular
accelerations of the suspension assembly.

To use the accelerometer readings in modeling, this term should be estimated using
pseudoderivatives of the measured angular rates, and subtracted from low-pass filtered
accelerometer measurements. Appropriate choice of time constant would result in a near
cancellation of the effect.

Both accelerometers and gyroscopes are subject to drift, which is driven primarily by
temperature variations and vibration. The drifts can be modeled as random walks or first-
order Markov processes. Quantitative characteristics are sensor specific, and can be inferred
from manufacturer specifications and flight tests.
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3.6.2 Global Positioning System Receiver

A low-latency, high update rate GPS receiver is needed for high-bandwidth helicopter con-
trol. The receiver used on the helicopter has 50 millisecond latency, and 10 Hz update rate.
Other sources of error include multipath, ionospheric and tropospheric delays, satellite and
receiver clock drifts, etc. As a rough approximation, these can be represented by white
Gaussian noise, with the standard deviation values determined by ground tests.

Another key requirement for GPS receivers used onboard autonomous aerobatic heli-
copter is a fast reacquisition time. The helicopter inevitably loses track of satellites during
inverted flight, dead-reckoning is used to estimate helicopter position and velocity until
satellite tracking is reacquired. A common hot reacquisition time is 3 seconds, sufficiently
low to maintain adequate state estimate with dead-reckoning.

3.6.3 Barometric altimeter

Pressure altimeter provides an accurate source of sea-level altitude information out of ground
effect. Important sources of error are sensor quantization and measurement noise. We used
a high-end altimeter with 10−3 psi (0.6 meters) resolution. The measurement noise was
assumed to be white Gaussian with a standard deviation of 6 · 10−4 psi.
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Chapter 4

Control system design for
autonomous aggressive
maneuvering

4.1 Control approach and autopilot modes

Aerobatic flight can be broken down into two distinct flight regimes: following trim tra-
jectories between the maneuvers, and the maneuvers themselves. Between the maneuvers,
the pilot uses fine adjustments to maintain or gradually transition between equilibrium
trajectories, characterized by forward speed, sideslip angle, climb rate and turn rate. This
flight regime is adequately described by linear models, and can be automated using control
design methods developed for linear time-invariant systems. Aerobatic portion of the flight
imposes a special demand on these trim-trajectory controllers: fast recovery from aggres-
sive maneuvers must be assured. During the development and initial testing phase of the
logic for autonomous aerobatics the vehicle may end up in an unusual attitude and with
an exceedingly fast forward speed. The trim trajectory controllers represent an essential
line of defense in such circumstances. Manual takeover of control by an R/C pilot is the
last resort, which may still be unable to recover the vehicle in extreme situations due to
pilot’s disorientation and lagged reaction time. Since the pilot is not actively controlling the
helicopter during an autonomous flight, there is a lag, or an adjustment period, required
for the pilot to assess the situation and fully regain control in case of emergency.

Among different linear control design methodologies, the linear quadratic regulator
(LQR) provides a degree of robustness to plant uncertainties for systems with full-state
feedback [1], and results in easily implementable low-order controllers. Based on flight
experiments, longitudinal-vertical and lateral-directional dynamics of the X-Cell in low ad-
vance ratio flight (up to µ = 0.15) are sufficiently decoupled [16, 17] to design separate
feedback controllers. The LQR approach was adapted for trim trajectory control of the he-
licopter (see Sections 4.2 and 4.3). Since helicopter dynamics changes significantly between
hover and forward flight, the gains were scheduled with forward speed; a novel gain schedul-
ing scheme was utilized (see Section 4.3). Flight tests have demonstrated fast response of
the resulting closed loop system, and reliable recovery from the maneuvers.

Maneuvering portion of the flight requires large control inputs. The vehicle state vari-
ables, such as angular rates, attitude, and speed, undergo large and rapid variations. A
linear model can not adequately describe full vehicle dynamics during aerobatic maneuvers.

55



During some segments of aerobatic maneuvers the vehicle is uncontrollable in the system-
theoretic sense. For example, if the vehicle is banked 90 degrees it can not maintain its
altitude. These factors make it difficult, or impossible, to track aerobatic state trajectories
with linear control design methods, or with approaches based on feedback linearization.

Frazzoli [12] suggested a nonlinear control design method for helicopters based on a
so-called backstepping approach. The central idea in the method is to determine desired
main rotor thrust and orientation based on translational commands (velocity or position),
and then use the control moments to orient the rotor in the desired direction. The tail
rotor thrust is used primarily to counteract the main rotor torque. Using an idealized
helicopter model, and a novel representation of attitude error, a control Lyapunov function
was constructed for a particular controller, which featured an explicit cancellation of the
nonlinear terms with control moments, and proportional-derivative controllers for attitude
and position. For the simplified model used, the method was theoretically proved to provide
tracking controllers for a wide class of trajectories, including aggressive trajectories involving
extreme attitude angles. The mathematical model used for design and evaluation of this
controller relied on a number of unrealistic assumptions: exact knowledge of the tail rotor
torque and moments of inertia, and instantaneous application of precisely known control
moments. While the design approach in its current state is probably not applicable to a
real helicopter, the approach may potentially be modified to yield a practical control design
method for tracking aerobatic trajectories.

A different approach to autonomous execution of aerobatic maneuvers was used by the
author. It was inspired by the observed human pilot’s strategy [14]. Based on the input
and state time histories recorded during a series of manual aerobatic maneuvers, we made
the following observations: each particular type of maneuver is largely repeatable; the pilot
uses few continuous feedbacks during the maneuvers; most of the pilot’s actions can be
described by piece-wise constant or piece-wise linear functions, with the switching times
determined by the vehicle attitude. To illustrate the above, consider state and control time
histories for multiple axial roll maneuvers, given in Figure 4-1.

During the maneuver, the pilot is using the lateral cyclic and collective pitch control
inputs. Proportional yaw rate feedback to the tail rotor pitch is always active during the
maneuver. We can see that the commands are either held constant, or changed as linear
functions of time. The time for ramp-up or ramp-down of the commands varies between
0.2 and 0.4 seconds. It appears that as soon as the pilot made a decision to change the
control input, he performs it in a feedforward fashion, with no apparent continuous feedback.
The length of ramp periods is related to a human’s neuromuscular response time, which is
generally on the order of 0.2 seconds. A pilot probably would not use faster, more step-like
commands even if he could, to avoid exciting the lightly damped pendulum-like modes,
described in Section 3.4.1, which would put extra stress on the airframe. A question arises,
what triggers the command transitions between various portions of the piece-wise linear
profiles? At the start of the maneuver, the pilot ramps a particular command to the desired
level (e.g. maximum lateral cyclic at the start of an axial roll). Both the level and the
time of the ramp are highly repeatable. It is thus reasonable to assume that this portion is
entirely feedforward, an automatic movement of the fingers. By analyzing the timing of the
start of the ramp down of the lateral cyclic command, we observed that it correlates highly
with the bank angle, i.e. the ramp down starts when the helicopter is about 50 degrees away
from being level. This matches well the instructions given in handbooks for aerobatics [8].
An analysis of the use of the cyclic and tail rotor commands in other maneuvers (split-S,
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Figure 4-1: Recorded state and input time histories for multiple axial roll maneuvers. The
variables of interest are the pilot lateral cyclic control (δa), the helicopter roll angle (φ),
and the pilot collective controll (coll)
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Figure 4-2: Recorded state trajectory during a manual axial roll

hammerhead, loop) shows the same pattern: an attitude-based discrete feedback is used to
switch the commands between different portions of piece-wise linear patterns.

In Figure 4-1 we can see that the collective modulation, while also seemingly piece-wise
linear, is somewhat less repeatable than the cyclic commands. The timing of the collective
command is critical for maintaining altitude and minimizing course changes during the
maneuver. Conceivably, by trial and error, the pilot would find a pattern which results
in a particularly clean maneuver, and make it repeatable. A good candidate for collective
modulation law during aggressive maneuvers can be inferred from the following physics-
based reasoning. A trim thrust level is desired during an upright flight (0 degree roll angle),
negative thrust of a similar magnitude during an inverted flight (180 degrees), and no thrust
is needed when the rotor disc is perpendicular to the horizon (90 and 270 degrees). A cosine
function of bank angle meets these conditions. One can assume that the pilot unconsciously
tries to approximate the cosine function of bank angle with a piece-wise linear function of
time. Figure 4-2 shows the state and control trajectories for a relatively cleanly executed
axial roll (small altitude loss, albeit some heading change). Notice the similarity between
the actual collective command and a signal proportional to the cosine of bank angle. This
physics-based collective modulation law seems applicable to other maneuvers as well: the
goal seems to be to modulate the main rotor thrust as a cosine of the angle between the
local vertical and body Z-axis.

Despite an apparent simplicity of the pilot’s strategies for maneuver execution, recre-
ating them in a completely open-loop fashion (except for the yaw rate feedback, which is
a must) can not provide consistent trajectories. The helicopter is an unstable dynamic
system, and disturbances will change the trajectories between the runs. The pilot may be
making some fine adjustments in the proposed command framework (e.g. in the length of
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Figure 4-3: Recorded state trajectory during an axial roll with rate tracking controllers

the ramp intervals, levels of commands), which yield a better repeatability of trajectories
and a safe execution of the maneuvers.

The desired feedback structure was provided by the angular rate tracking controllers.
From the pilot’s perspective, a helicopter with a hingeless rotor feels like a rate control
system (as opposed to articulated rotors, where the pilot effectively controls angular accel-
erations with cyclic actuators). We have found that the pilot’s strategy remains unchanged
when a tight angular rate control augmentation system was used. In this case, the pilot
commanded roll, pitch and yaw rates, and collective angle. Compare Figure 4-3, showing
the state and control time histories for an axial roll performed with the rate command
system, and those for an open-loop execution in Figure 4-2.

Figure 4-4 further illustrates the approximation of the pilot’s rate commands with piece-
wise linear functions. As can be seen, the ramp-up and ramp-down times are on the order
of 0.2-0.4 seconds. As is typical for the axial roll maneuver, the ramp down starts when the
bank angle reaches −50 degrees (for a roll to the right). Finally, we can see the closed-loop
roll rate response is similar to the open loop response from the pilot’s perspective: it has a
fast rise time (≈ 0.2 sec), and a second-order characteristic, although it is better damped.

The rate tracking loops were single-axis proportional-integral controllers. Notch filters
on cyclic commands were used to attenuate the lightly damped fuselage-rotor modes [40]
and permit higher controller bandwidth. The pilot performed a number of maneuvers with
the rate command system instead of the open-loop commands. The resulting angular rate
trajectories for several maneuver types were approximated with piece-wise linear functions,
and specific attitudes for switching rate commands were inferred by superimposing the
rate commands and attitude time histories. The resulting rate command trajectories were
implemented in software as simple state machines. These approximations served as the
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Figure 4-4: Comparing pilot rate command with a piece-wise linear approximation

reference commands for the angular rate tracking loops during completely autonomous
execution of the maneuvers. Examples of these commands for several maneuvers are given
in Section 4.4. This method relies on a close tracking of the angular rate commands, which
is possible for a miniature helicopter with a hingeless rotor, featuring quick response and
large control power of the cyclic actuators.

To facilitate with the flight testing of the described control laws, we developed several
flight control modes, shown in Table 4.1. A regular two-stick R/C transmitter unit is used
to uplink pilot commands to the flight control computer. In the “manual” mode the pilot
commands the main rotor collective and cyclic pitch deflections on the transmitter sticks, as
well as a setpoint for a yaw rate feedback controller. In the “rate tracking” mode the pilot
commands all three angular rates and the collective pitch. In the “velocity/heading rate
command - altitude hold” (VHRCAH) mode the pilot commands turn rate, forward, side
and vertical velocities (the operator has an option to engage altitude hold). In the “hover
hold” mode the helicopter maintains GPS position, pressure altitude, and heading. Finally,
the pilot can initiate a pre-programmed sequence by activating a switch on the remote-
control transmitter. The sequence can include either a single aerobatic maneuver or an
aerobatic routine, where the helicopter follows selected GPS waypoints, performs aerobatic
maneuvers at specified locations, and returns to hovering flight at the starting point.

The first flight test of each of the automatic maneuvers proceeds as follows: (1) the pilot
takes off manually, and engages the “velocity/heading rate command/altitude hold” mode
at a safe maneuver altitude; (2) the pilot commands the forward speed setpoint used for
the maneuver execution (12 and 15 m/sec were used). From that point the helicopter is
flown with a single left sideways stick - turn rate (or, equivalently, bank angle) command.
The autopilot maintains the altitude and forward speed setpoints. (3) After performing a
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number of turns to attain the desired course and position, the pilot brings the helicopter to
level flight by commanding zero turn rate (releasing the spring-loaded stick). (4) He then
engages an entirely automatic maneuver sequence by a switch on the R/C transmitter. The
helicopter performs the maneuver, and exits the sequence at a close to level attitude and
practically zero angular rate. (5) At this point the controller automatically goes back to the
“velocity/heading rate command/altitude hold” mode. The altitude hold acquires a new
setpoint, and the forward speed returns to the selected speed setting.

Table 4.1: Autopilot Modes for MIT X-Cell Helicopter

Manual Rate Tracking VHRCAH Hover hold

Longitudinal Lon. Cyclic Pitch rate Forward velocity Position
Lateral Lat. Cyclic Roll rate Side velocity Position
Directional Yaw rate Yaw rate Turn rate Heading
Vertical Collective Collective Altitude/rate Altitude

4.2 Longitudinal-vertical trim trajectory controller

The command variables are the body-axis forward and inertial vertical velocities. The pilot
commands forward speed in the range of -2 to 15 m/sec by fore-aft deflections of the left
stick on the remote control (this stick is used to command collective pitch in the “manual
mode”). The stick is not spring-loaded, and the pilot uses it as a trim setting for velocity
hold, without actively controlling the speed. Longitudinal deflections of the spring-loaded
right stick are used to command altitude rate or to engage altitude hold. This command
structure allows changes in speed and altitude, and at the same time relieves the pilot of
the tasks of controlling vertical and longitudinal channels for most of the flight.

4.2.1 Linearized longitudinal-vertical dynamics

A linear model of the longitudinal-vertical dynamics was obtained by an analytical lin-
earization of the nonlinear equations of motion around a steady turning flight at a constant
altitude.

The state vector of perturbations from the trim conditions isXlon =
[
u a1 w q θ

]T
,

where u is the perturbation in the body axis forward speed from the trim speed Ue, a1 is
the longitudinal flapping angle of the main rotor, w is the body Z-axis velocity, q is the
pitch rate and θ is the pitch angle. The vector of control input perturbation values is

Ulon =
[
δlon δcol

]T
, where δlon is the longidutinal cyclic pitch, and δcol is the collective

pitch of the main rotor blades. The equations of motion are:

u̇ = Xu (u− uw)− g

cos Φe
a1 − Ue tanΘeq − g cos Θeθ

ȧ1 =
1
τe

∂a1

∂µ

u− uw

ΩR
− a1

τe
+

1
τe

∂a1

∂µz

w − ww

ΩR
− q +

Kδlon

τe
δlon +

1
τe

∂a1

∂δcol
δcol

ẇ = Zu (u− uw) + Zw (w − ww) +
(
Zht

q + Ue

)
q − g cos Φe sinΘeθ + Zcolδcol (4.1)
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q̇ = Ma1a1 +Mht
w (w − ww) +Mht

q q

θ̇ = cos Φeq

Here Φe is the trim value of the bank angle; Θe - the trim pitch angle, which is determined
by the trim solution, ΩR is the main rotor blades tip speed, uw and ww are projections of
wind speed on body axes. Aerodynamic coefficients, or stability and control derivatives,
are obtained by linearization of the nonlinear model near the selected equilibrium point,
e.g. Xu = 1

m
∂X(Ue,Φe)

∂U . The effective time constant of rotor flapping τe is determined by
the stabilizer bar aerodynamic and inertial properties [17, 37].

4.2.2 Model reduction for control system design

We based the control system design for trim trajectory tracking on a linear quadratic
regulator, which provides excellent robustness properties when a measurement of the full
state vector is available [1, 32]. When full state vector is not available, an estimator with
a significantly higher bandwidth than the open-loop plant dynamics is known to provide
good robustness properties in practice. Forward velocity, ascent rate, pitch angle and pitch
rate can be either measured or reasonably accurately estimated in real-time, either by an
extended Kalman filter or a combination of complementary filters [47]. Note that the EKF
described in Section 2.3 relies on a kinematic model rather than on a full dynamic model of
the helicopter, which, intuitively, mitigates the loss of robustness of the closed loop system
to modeling errors.

Rotor flapping angles are difficult to measure. We decided to use a rigid body ap-
proximation of the longitudinal-vertical dynamics. However, the flapping state participates
in a lightly damped fuselage-rotor coupling mode [40, 37]. We used a notch filter on the
longitudinal cyclic to eliminate potential gain margin problems with the controller design
based on the reduced-order model [38, 44]. With the notch filter the attitude rate dynamics
can be approximated by a first order transfer function [38] (Fig. 4-5), which corresponds
to a quasi-steady rotor flapping dynamics. The reduced 4th order dynamics should then
approximate the plant with the notch filter on the longitudinal cyclic. The equations of
motion for the reduced order model can be obtained by replacing the differential equation
for the flapping state with an algebraic relationship.

Additional stability derivatives will arise in the process. The effective rate damping
due to the main rotor Mmr

q can be derived from the quasi-steady approximation, however
it would result in a significant phase lead compared to the actual cyclic-to-rate transfer
function augmented with the notch filter. Therefore, the damping derivative Mmr

q was
chosen to match the frequency at which the notched plant achieves 45 degree phase lag [38],
as shown in Figure 4-5. The longitudinal cyclic control derivative Mmr

δlon
was chosen to

produce the same steady state response from the pitch cyclic to the pitch rate as the
original plant.

4.2.3 Control system design

To guarantee zero steady state error in tracking forward speed and altitude rate the re-
duced order state vector was augmented with the integrators, which resulted in a new
6-dimensional state vector and corresponding state and control matrices. The equation for
the integral of the forward speed error is:

u̇i = ucmd − u (4.2)
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Figure 4-5: Longitudinal cyclic to pitch rate transfer function approximations

The linearized equation for the altitude rate integral error is

V̇hi = V cmd
h − u sinΘe + w cos Θe cos Φe − θUe

(
cos Θe +

sin2 Θe cos Φe

cos Θe

)

The feedback gains for this 6× 2 system were calculated with a linear quadratic regulator
approach. Diagonal Q and R matrices were used in the quadratic cost function.

J =
∫ ∞
0

(
xTQx+ uTRu

)
dt (4.3)

The controllers were designed for the following seven trim points: -3, 0, 3, 6, 9, 12 and
15 m/sec body axis forward speed. Linear interpolation was used to obtain the gains
for intermediate forward velocities. All design cases were based on a trim bank angle of 45
degrees; which was the maximum commanded bank angle. Banked flight is more challenging
for control design because collective control is less efficient in maintaining commanded
vertical rate.

Based on simulation studies with the full model, which includes the flapping state and
the notch filter, we eliminated several gains. To improve the transient response a feedforward
from the forward speed command to the longidutinal cyclic was added. It was implemented
as the pitch angle command proportional to the speed command: θcmd = G1 ·ucmd. Two ad-
ditional feedforward signals were used to facilitate the enforcement of kinematic constraints.
In steady turns the aircraft must maintain body axis pitch rate, proportional to yaw rate:

qcmd = rcmd tanφcmd (4.4)
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Figure 4-6: Longitudinal-vertical control architecture

The collective pitch was modified as a function of commanded pitch and bank angles to
reduce altitude loss during rapid accelerations or hard banks:

δff
col =

1
2
δss
col

(
φ2

cmd + θ2
cmd

)
(4.5)

where δss
col is the value of the collective angle low-pass filtered with a first order filter with

10 seconds time constant. Figure 4-6 shows the resulting control architecture.
The control laws were designed to the following specifications: the damping ratio of at

least 0.5 for the two oscillatory modes with the frequencies of less than 10 rad/sec; rise time
for the altitude rate step response of no more than 1 second; rise time for the forward speed
step response of no more than 2.5 seconds. Bryson’s rule [3] was used for initial guess of
diagonal entries of Q and R weighting matrices, which were then tuned to conform to the
above specifications. A constant-gain proportional controller was designed for the altitude
hold. The requirement for the altitude hold was set to maximum ±3 meter error during 45
degree banked turns.

The rate of change of the forward speed command was limited to -5 m/sec/sec for
deceleration and to 2 m/sec/sec for acceleration to avoid rapid changes in the gains of the
lateral-directional controllers, scheduled with forward speed.

Prior to flight tests the controllers were extensively tested in a hardware-in-the-loop
simulation [47]. Flight testing showed that the longitudinal-vertical closed loop dynamics
were predicted well by the simulation. Figure 4-7 shows the forward velocity and altitude
time histories during rapid acceleration and deceleration maneuvers.

In the early version of the avionics package the forward velocity estimate was corrected
by the GPS measurements that arrive once a second, with 1 second latency. We also
found that there is an additional effective 0.3 second latency contributed by the internal
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Figure 4-7: Forward velocity and altitude time histories during rapid acceleration and
deceleration

estimator used in the particular GPS receiver we used originally. After compensation [47]
this resulted in 1 m/sec jumps on average due to corrections. Pressure altitude is measured
with a resolution of 2 feet. The pitch angle, estimated through gravity aiding, was within
5 degrees of the true value based on the estimate obtained in data post-processing. During
this flight winds up to 10 knots were recorded. The control law experimentally proved to
be robust to such measurement errors and disturbances.

4.3 Lateral-directional trim trajectory controller

We chose the yaw rate and the sideslip velocity as the command variables. The yaw rate
command is mechanized as a turn rate command such that it acts as the yaw rate command
at hover and as an effective bank angle command in forward flight. The control logic uses
the tail rotor to turn at hover, and primarily the lateral cyclic in forward flight, utilizing the
tail rotor for the turn coordination. The pilot commands turn rate by a sideways deflection
of the right stick (lateral cyclic in manual mode), and side velocity by a sideways motion of
the left stick (yaw rate command in manual mode). Both stick deflections are spring-loaded.
During most of the flight the pilot uses a single left stick sideways motion to control turn
rate of the helicopter in cruise flight, while the autopilot performs turn coordination, and
maintains altitude and forward speed.
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4.3.1 Linear model and control design

X-Cell’s lateral-directional dynamics are adequately described by a linear model with five

states and two inputs. The state vector is x =
[
v b p r φ

]T
, where v is the side

velocity, b is the lateral rotor flapping, p is the roll rate, r is the yaw rate, and φ is the roll
angle. The control inputs are the lateral cyclic δa and the tail rotor pitch δr. The rotor
torque variation due to collective pitch deflection δcol leads to a change in yawing moment,
and is treated as a disturbance. Another source of disturbance is wind side velocity vw.
The equations of motion are

v̇ = Yv (v − vw) + g · b+Wep+ (Yr − Ue) r + g cos(Θe)φ+ Yδrδr

ḃ = − 1
τe
b− p−Bµ

v − vw

ΩRmr
+
Blat

τe
δa (4.6)

ṗ = Lbb+ Le
v (v − vw) + Lrr + Lδrδr

ṙ = Nv (v − vw) +Npp+Nrr +Nδrδr +Nδcol
δcol

φ̇ = p+ tan(Θe)r

As in the longitudinal case, a notch filter on the lateral cyclic was applied to alleviate
potential gain margin problems due to the lightly damped fuselage-rotor mode [38], and
allowed the use of the rigid-body approximation for the design. Integrators were appended
on the command variable tracking errors; LQ gains were computed for the resulting 6 × 2
system. The gains were designed for seven forward speed values from -3 to 15 m/sec.

The gain scheduling problem for the helicopter lateral-directional control system is chal-
lenging because several gains change drastically between the design points to accomodate
the change in dynamics. At hover, it is natural to use the tail rotor pitch to effect the
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Figure 4-9: Lateral-directional gain variation with forward speed

change in turn rate, whereas in forward flight the lateral cyclic is used to achieve coordi-
nated banked turn. This is reflected in the gain tables. At hover the feedback gain K26

(see Fig. 4-8 for controller diagram) from the integral of the yaw rate error (ri) to the tail
rotor pitch is large, while in forward flight this gain is small and the gain K16 from ri to
the lateral cyclic is large. If linear interpolation were used for gain scheduling, the look-up
tables for these gains would be like the ones depicted in Figure 4-9.

Let us consider the effect of the rapid gain variation on lateral-directional response dur-
ing a fast speed-up from hover. At hover, the integral of the yaw rate error (ri) determines
the trim offset of the tail rotor pitch (after multiplication by tail rotor pitch gain K26).
Since the cyclic gain (K16) is small at hover, this state does not contribute appreciably to
the cyclic trim offset. However when the helicopter accelerates, the cyclic gain grows very
rapidly, which will lead to an undesired banking of the helicopter. Similarly, during a fast
stop the helicopter will experience an unwanted yawing. These effects were observed both
in simulation and in flight, when a linear interpolation was used for the gain scheduling.

To mitigate the undesired responses, we implemented a different gain-scheduling scheme.
The controller gains were kept constant until a new design point velocity was reached; hys-
teresis logic was used to prevent limit-cycling. Continuity of the control surface commands
during the gain switching (as well as during switching between different controller modes)
was ensured by resetting the integrator states to appropriate values. This is possible when
the control system has at least as many integrators as control surface inputs (equal number
in this case). Let the vector of control surface commands be computed according to:

u = Gpxp +Gixi (4.7)
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Figure 4-10: Bank angle response

where xp are physical states, xi are integrator states, Gp and Gi are the corresponding
gain matrices. Then during the initialization of the control mode (or gain switching), the
integrator states can be initialized as:

xi = G−1
i (u−Gpxp) (4.8)

where u is the last control input used by the previous control law before the switching. The
discrete gain scheduling logic with hysteresis proved superior to a linear gain interpolation
for rapid transitions between hover and forward flight, when several lateral-directional gains
change by an order of magnitude or more to compensate for the change in plant dynamics.
This makes the helicopter use appropriate control effectors for changing heading both in
hover and in forward flight without any explicit mode switching required from the pilot. It is
interesting to determine theoretical stability bounds for systems with such a gain-scheduling
scheme.

The turn rate command was artificially limited to preclude a commanded bank angle
above 45 degrees. The control laws were tested from hover to 15 m/sec forward flight;
the pilot performed a number of 45 degree banks. Figure 4-10 shows recorded bank angle
response to a commanded 45 degree turn. The controller is trying to minimize the yaw
rate tracking error with an integral term, and drives the helicopter to a trim bank angle
consistent with the demanded yaw rate, therefore this control structure does not require a
highly accurate bank angle estimate, 5 degree errors proved acceptable.
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4.4 Human-inspired logic for automatic maneuvering

The sequence for an autonomous maneuver execution, described in Section 4.1, requires
switching from the trim trajectory tracking controllers to the maneuver control laws and
back. In both cases the controllers have as many integrator states as control surfaces,
therefore it is possible to initialize the integrator states such that the surface deflections are
continuous, as described in Eq. (4.8). This logic enables smooth transitions between the
modes.

Maneuver entrance and recovery are critical for successful implementation. To ensure
similar entry conditions for maneuvers, we introduced a leveling phase, where decoupled
proportional attitude controllers with inner loop rate feedback are used to bring the heli-
copter to an almost level attitude (within 3 degrees in roll and pitch by our choice). During
this mode the yaw rate feedback is maintained, and collective angle is kept constant. Since
attitude response is fast, this phase lasts for a short amount of time (less than half a sec-
ond; for additional safety a timeout is used as well). Furthermore, the logic checks if the
helicopter has sufficient speed and altitude to perform a maneuver.

To facilitate a safe recovery from the maneuver, the helicopter is allocated a settling
time (chosen to be 2 seconds) in the trim-trajectory mode before it is allowed to proceed
with another maneuver. It is interesting to investigate whether the state vector at the time
of the exit belongs to the region of attraction of the trim trajectory tracking controller.
Construction of a Lyapunov function for a simplified model with feedback controllers could
provide an analytical assessment of safe exit states [12, 36].

Each maneuver is therefore defined as a sequence of three phases: leveling, following
piecewise linear rate trajectories, and settling, as shown in Figure 4-11. This allows us to
sequence one maneuver after another, as long as there is sufficient speed and altitude at the
end of each settling phase. This capability was demonstrated in an autonomous airshow
routine by performing a hammerhead maneuver immediately after a split-S. The duration
of the settling phases can be evaluated in the simulation, and most likely can be reduced.
This may be required for applications where a rapid sequence of the maneuvers is necessary.

Below we present the design of the reference trajectories for the axial roll and split-S
maneuvers, and resulting flight test data for an autonomous execution of the maneuvers. In
addition we describe a fully autonomous airshow routine, implemented as a state machine
to demonstrate automatic transitions between various modes.
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Figure 4-12: Reference roll rate trajectory for axial roll maneuver

4.4.1 Axial roll maneuver

The pilot’s strategy for implementing the axial roll can be described as follows [14, 8].
Usually just prior to the maneuver the pilot slightly pitches up the helicopter to make
use of the translational lift while inverted (note that the leveling phase during a fully
autonomous execution plays the same role). To initiate the roll the pilot briskly ramps
up the lateral cyclic to a full deflection, and modulates the collective roughly as a piece-
wise linear approximation of a cosine of the bank angle; this keeps the thrust pointing up
when the helicopter is upside down, and generates zero thrust when the main rotor disk
is perpendicular to the horizon. When the helicopter reaches a specific attitude (≈ −50
degrees), the pilot brings the cyclic to neutral.

Based on these results, we generated reference trajectories for the angular rates. The
pitch and yaw rate commands were set to zero throughout the maneuver. The roll rate
trajectory, shown in Figure 4-12, approximated an actual trajectory during manual axial
rolls: t1 = 0.3 second linear ramp up to a maximum commanded value pmax = 165 deg/sec,
next a constant command until the helicopter rotated by 310 degrees at time t2, next a 0.2
sec linear ramp-down to zero commanded roll rate at t3, followed by 0.2 seconds coasting
time at zero roll rate command to stop the rolling motion after the maneuver (t4). We
decided not to use the Euler attitude angles during aerobatic maneuvers because of known
singularities of this attitude representation in case the helicopter reached +90 or -90 degree
pitch angle during a maneuver. We used an approximate roll angle obtained by integrating
the body axis roll rate after the maneuver initiation. This approximate roll angle was
used to determine the time of the ramp-down start, as described above. Alternatively, the
condition for switching can be also defined as reaching proximity of a certain attitude. One
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Figure 4-13: Recorded state trajectory during an autonomous axial roll

can utilize a measure of distance between the current and the target attitudes used by
Bullo [4] and Frazzoli [12].

The collective pitch angle, which largely determines the rotor thrust, was modulated as
cosine of the angle between the local vertical and body Z-axis. This strategy results in a
profile that is close to the pilot’s actions during the roll:

δcol = max
(
δtrim
col · cosφ cos θ, δmin

col

)
(4.9)

where δtrim
col is the trim collective angle in forward flight. We limited the negative collective

angle to δmin
col = −3 deg (full travel is from -10.5 deg to 10.5 deg) to retain sufficient control

authority during portions of the flight with negative rotor loading; this approach is also
used by pilots.

Figure 4-13 shows the flight test data for an autonomous axial roll, which was part
of the autonomous airshow sequence described below. Note that the changes of heading
angle, speed, and altitude are small between the maneuver entrance and exit. These are
the desired features for the axial roll maneuver.

4.4.2 Split-S maneuver

The same approach was used for an autonomous execution of an advanced aerobatic ma-
neuver, a split-S, which consists of a half a roll immediately followed by half a loop. The
yaw rate command is kept at zero during the entire maneuver. The roll and pitch rate
commands are shown in Figure 4-14. Here the start of the roll rate ramp down t2 and the
pitch rate ramp down t4 are determined by achieving predefined pseudoattitude angles φd
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Figure 4-14: Pitch and roll rate reference trajectories for split-S maneuver

and θd.

t2 :
∫ t2

0
pdt = φd (4.10)

t4 :
∫ t4

t3
qdt = θd (4.11)

The collective pitch command is given by Eq. 4.9.
Figure 4-15 shows the recorded state trajectories during an autonomous split-S maneu-

ver. The helicopter dropped 30 meters and reached 18 m/sec forward speed in a dive, which
was well predicted in the simulation. The total heading change from the entry until the
exit of the maneuver was very close to 180 degrees (within 5 degrees).

4.4.3 Autonomous airshow routine

To demonstrate transitions between trim trajectory modes and maneuvers, and sequencing
of the maneuvers, we developed a fully autonomous airshow routine. The helicopter follows
a figure-8 route defined by four waypoints (see Figure 4-16 for schematic location of the
waypoints), and performs maneuvers and maneuver sequences on pre-defined laps. The
waypoint guidance logic is performed with a conventional algorithm which aims to minimize
the cross-track error. The logic for the routine was implemented as a state machine, shown
in Figure 4-17. When the routine is engaged, the helicopter climbs vertically to 50 meter
altitude above ground level (AGL), upon which it transitions into waypoint navigation
flight while continuing to climb to 120 meters AGL. When this altitude is reached, the
helicopter continues waypoint navigation while holding the altitude. When it is on the way
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Figure 4-15: Recorded state trajectory during an autonomous split-S

from waypoint 0 to waypoint 1, and certain distance away from waypoint 1 (100 meters),
it initiates the axial roll maneuver. Upon the exit from the axial roll, the helicopter heads
toward waypoint 2 holding the exit altitude, and continues waypoint navigation until it is
again on the way from waypoint 0 to waypoint 1, 100 meters away from reaching it. At
this point a split-S is initiated. Upon the exit from split-S the helicopter heads toward
waypoint 3, then 0, and performs a hammerhead maneuver at roughly the same region of
the sky where previous maneuvers were performed. After the hammerhead maneuver the
helicopter continues waypoint navigation starting from waypoint 3, while climbing back
to 120 meters AGL. Upon reaching the target altitude, the helicopter continues waypoint
navigation in altitude hold until it is back in the region selected for maneuver entrance, and
initiates a split-S. At the end of the two-second settling phase of the split-S maneuver, the
helicopter immediately performs a hammerhead. After this, the helicopter goes back to the
point where the airshow sequence was engaged, and transitions to hover, waiting for further
commands.

Figure 4-18 shows flight data for the split-S - hammerhead maneuver sequence. The
minimum entry speed for the hammerhead maneuver was defined as 14 m/sec; at the exit
of the split-S maneuver the helicopter has sufficient speed to perform it.

4.5 Simplified hybrid model for motion planning

The demonstrated ability to transition from trim trajectory tracking to a maneuver and
back, and from one maneuver to another, calls for a simplified state-machine-like repre-
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sentation of helicopter behavior, which can then be used for motion-planning algorithms.
Figure 4-19 gives a schematic for such a state machine with three maneuvers.

In trim trajectory phase the helicopter can be described by simplified continuous-time
equations that approximate closed-loop dynamics. Assume that the sideslip command is
always equal to zero, and for now neglect the tracking error. Furthermore, by design
closed-loop response to forward velocity, vertical velocity and turn rate commands exhibit
characteristics of second-order systems with small overshoot (5-10 percent). Ideally, the
amount of cross-coupling in the closed loop response should be small, let us neglect it to
simplify the model. Next, let us approximate these closed loop responses by decoupled
first-order systems.

Figure 4-20 shows the comparison of the actual closed-loop response and its first order
approximation for forward velocity.

Figure 4-21 shows the comparison for the yaw rate (which is close to turn rate). The yaw
rate signal is noisy due to a number of reasons (residual vibration, non-smooth operation of
the engine producing torque transients, and coarse quantization of the tail rotor actuator,
which leads to a limit-cycle pattern). Nevertheless, one can see that the low-frequency trend
is captured well by the first-order approximation.

Finally, Figure 4-22 shows the comparison for the altitude rate. Poor match in the
beginning of the segment is due to cross-coupling with the lateral-directional response - the
helicopter performed a banking turn. This shows that the approximate model is far from
ideal, however it represents a reasonably realistic representation of the dynamics with a
very low number of states.

Using the above approximations for the closed-loop dynamics, we can write the following
simplified model, which includes heading and 3D position states:

u̇ = − 1
τu
u+

1
τu
uc , τu = 1.3 sec
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Figure 4-20: First-order approximation of the closed-loop velocity response
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Figure 4-21: First-order approximation of the closed-loop yaw rate response
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Figure 4-22: First-order approximation of the closed-loop altitude rate response

ṙ = − 1
τr
r +

1
τr
rc , τr = 0.7 sec

V̇ h = − 1
τh
V h +

1
τh
V h

c , τh = 0.6 sec

ψ̇ = r

ṗN = u cosψ
ṗE = u sinψ
ḣ = V h

A beneficial feature of this representations is that while the open-loop dynamics changes
drastically from hover to forward flight, the time constants in the approximations of the
closed-loop responses can be assumed constant.

The maneuvers can be represented as discrete changes in the states, which occur in a
given time. Monte-Carlo simulations and flight experiments can provide an estimate of the
variation of the exit states for a particular maneuver. Since the maneuver execution logic is
based on tracking of the rate trajectories, this uncertainty can become large in the presence
of strong winds. It is interesting to investigate if there is an alternative control structure,
which can ensure a more repeatable change in the states associated with each maneuver in
the presence of disturbances.
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Chapter 5

Conclusions and future work

5.1 Summary

In this thesis we have developed and experimentally validated a set of tools, which enabled
a fully autonomous execution of aerobatic maneuvers with an agile unmanned aerial vehicle,
namely a miniature hingeless rotor helicopter. The main contributions are:

• A simplified framework for modeling the dynamics of miniature hingeless rotor heli-
copters. The resulting model was experimentally shown to provide adequate descrip-
tion of helicopter dynamics in a wide range of flight conditions, including aerobatics.

• An analysis and mathematical modeling of the human pilot’s strategies for execution
of aerobatic maneuvers, based on recorded flight data. These strategies provided an
essential part of the logic for an autonomous execution of the maneuvers.

• A methodology for designing model-based control laws for an autonomous execution
of aggressive maneuvers. The resulting control laws were validated with a consistent
autonomous execution of several aerobatic maneuvers with a miniature helicopter.

• A simplified hybrid model of helicopter dynamics under feedback control, suitable for
use in guidance or motion-planning algorithms.

• An experimental testbed, which includes an avionics package custom-designed for
aerobatic flight, and a realistic hardware-in-the-loop simulation.

• A numerically efficient implementation of the state estimation algorithm (Extended
Kalman Filter), based on the recently developed attitude error representation, which
offers more accurate handling of large initialization errors.

The basis for a simplified modeling framework comes from the fact that the dynamics
of miniature helicopters is dominated by the rotor response. A relatively low speed flight
envelope, characteristic of these machines, makes modeling still easier. Building upon recent
work by Mettler [37], based on frequency-domain analysis of linearized helicopter dynamics
around equilibrium conditions, we showed that a first-order flapping dynamics coupled
with the rigid body dynamics is sufficient for an accurate description of attitude dynamics
in aerobatic flight. Simple analytical methods were used to model aerodynamic forces
acting on the fuselage and empennage. The framework relies on direct measurement of the
majority of physical parameters, and flight data from a set of simple responses, like step
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inputs. Expensive and time consuming system identification or wind-tunnel testing were
avoided in the process, nevertheless the resulting model proved adequate for the design of
high bandwidth control systems necessary for autonomous aerobatics.

The control laws consist of two separate modes, and a bumpless transfer logic for switch-
ing between the modes. First type of controllers guide the helicopter along the equilibrium,
or trim trajectories. These controllers are designed by adapting a linear quadratic regula-
tor method to a reduced order helicopter model, appended with integrators on the control
variable tracking errors. A novel gain-scheduling scheme, based on discrete switching of
gain tables with hysteresis and bumpless transfer logic, was used to accommodate rapid
changes in gain values with the scheduling parameter (forward speed). The resulting closed
loop control system was experimentally shown to possess the following key features: quick
recovery from aerobatic maneuvers to the commanded trim conditions, as well as robustness
to gust disturbances and sensor errors. We have also shown that the closed loop dynam-
ics under trim trajectory controllers can be approximated by a set of decoupled first-order
models (velocity, turn rate, and altitude command following systems). Motion planning
algorithms can use this simplified representation to significantly reduce computation time,
while still retaining realistic response and agility.

The second type of controllers were designed specifically for an execution of aerobatic
maneuvers. To develop this part of the logic, we studied maneuver execution strategies
of R/C pilots with an expertise in aerobatics. Based on the recorded pilot inputs and
vehicle state time histories, we came to the following conclusions: the commands and tra-
jectories during maneuvers are highly repeatable, the pilot actions can be closely approxi-
mated by piece-wise linear functions, the switching times for which are determined by either
neuromuscular response time, or by reaching a certain repeatable attitude. Another key
observation comes from the dynamics of the hingeless rotor helicopters: they behave like
rate-command systems in response to cyclic inputs. We replaced the open-loop control with
tight proportional-integral angular-rate tracking controllers, which feature response times
comparable to the neuromuscular response of a well-trained pilot (≈ 0.2 sec). Predictably,
the pilot’s execution strategies did not change. Due to fast hingeless rotor response to cyclic
actuation, and small moments of inertia characteristic of miniature helicopters, the angular
rate tracking controllers were designed with a fairly high crossover frequency, which enabled
excellent command following and disturbance rejection. Pilot commands during the ma-
neuvers served as a basis for piece-wise linear angular rate command profiles, which were
followed during the autonomous execution of the maneuvers.

In order to be able to perform one maneuver after another, we redefine the maneuver as
a sequence of three phases: leveling, rate-trajectory following (aerobatic maneuver itself),
and settling in the trim-trajectory mode. During the leveling phase the helicopter attitude
is brought to within 3 degrees of horizon in pitch and roll. This phase is typically short
due to fast attitude response of the helicopter (less than 0.5 seconds), which means that
the velocity will not change substantially during this phase. As a result, we can provide
common starting conditions for the maneuvers.

Using a library of maneuvers, and a simplified representation of closed-loop dynamics
under trim-trajectory controllers, we propose a hybrid model of helicopter dynamics. The
helicopter state is described by its forward velocity, turn rate, altitude rate, 3D position
and heading. While in trim trajectory mode, these states develop according to simplified
dynamic equations, which approximate actual closed-loop responses. Each maneuver rep-
resents a discrete change in the states, which occurs in a given time. Naturally, the state
change during a maneuver is affected by atmospheric disturbances. The helicopter can
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undergo a maneuver from trim trajectory mode or immediately upon exit from another ma-
neuver, provided that the entry conditions are satisfied (i.e. minimum speed and altitude).
This model, based on responses determined from flight data, provides a simple and realistic
description of agile helicopter dynamics under the feedback control system developed in this
thesis.

The work presented in the thesis relied heavily on the experimental setup, which was
developed concurrently. A multisensor avionics system was designed and built mostly from
off-the-shelf components, with a small number of custom electronic components. A passive
suspension system was designed to protect the avionics from the harsh vibration environ-
ment onboard the helicopter. The suspension system featured decoupled translational and
rotational modes. It was flexible enough to provide excellent attenuation of vibratory in-
puts, and at the same time stiff enough not to interfere with the helicopter dynamics and
sustain loads experienced in aerobatic flight. Flight control software was developed with
multiple processes with different priorities, all working under a real-time operating system.
Multiple-process design ensured modularity, resulting in rapid development and testing of
the software. Finally, the hardware-in-the-loop simulation proved to be an indispensable
tool for testing the system in the conditions maximally resembling the real world.

As a byproduct of the work on the avionics system, we developed a fast numerical im-
plementation of the Extended Kalman Filter, based on the attitude error representation,
suggested by Frazzoli [12]. While the attitude is normally expressed with a 4-parameter
quaternion method, the attitude error is commonly represented by a 3-parameter vector,
which represents angular errors around body axes. During the measurement update step,
the attitude error vector is estimated, and the quaternion is updated. Most of the quater-
nion update methods lead to the loss of the unit norm property, and require an explicit
normalization step, which leads to additional errors. We suggest using a previously devel-
oped quaternion update method, which retains the unit norm, and show that it is consistent
with the attitude error representation suggested by Frazzoli [12]. The advantage of the sug-
gested measurement update algorithm compared to the commonly used algorithms will be
noticeable for such cases when the attitude initialization errors are large, for example for
an in-flight alignment.

The ability to perform autonomous aerobatic maneuvers, developed in this thesis, showed
that there is no inherent tradeoff between agility and autonomy. This work is applicable in
a number of areas, ranging from urban warfare to filming agile aerial sequences in confined
spaces, for example for use in action movies. Nevertheless, a number of research topics arise
to improve the current algorithms, and to augment the utility of agile aerial robots. We
explore them in the next section.

5.2 Future research

In some applications, where space is severely confined, accurate tracking of 2-dimensional,
or even 3-dimensional position during agile maneuvers may be required. Current implemen-
tation relies on accurate tracking of angular rate profiles, but can not guarantee position
tracking, especially in the presence of strong wind. Repeatable position tracking during
agile maneuvers can be also beneficial in filming, since movie sequences frequently require
several repetitive takes.

On the instrumentation side, accurate tracking of position in aerobatic flight in the
presence of winds will probably require an airspeed sensor, and vanes to measure angles of
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attack and sideslip. Such devices are commonly used on full-scale helicopters equipped with
avionics systems. Recently light-weight miniature air-data systems were developed for use
in UAVs as well.

A much harder challenge comes on the algorithmic side. Since human pilots are unlikely
to be able to track a position trajectory (due to lack of accurate position perception as
opposed to attitude perception, and bandwidth limitations), an entirely different approach
(not inspired by human pilots) will have to invented. Obviously, position tracking will
require much higher bandwidth than rate tracking, and any proposed algorithms have to
pay special attention to available actuator bandwidth. The mathematical model of aerobatic
helicopter dynamics, developed in this thesis, can be used for evaluation of future algorithms.

Fast miniaturization of avionic components makes it possible to perform aerobatic ex-
periments on even smaller platforms, such as miniature helicopters powered by an electric
motor. These very light machines will have yet smaller moments of inertia, and with a
stiff enough rotorhead will be even more agile. Potentially, such vehicles can be also more
useful, being able to penetrate extremely confined environments, and being much quieter
than miniature helicopters powered by a piston engine.

It is interesting to explore if the proposed simplified modeling techniques, coupled with
the suggested control design methods, are applicable to small full-scale helicopters with
hingeless rotors for at least a part of their envelope. It is likely that future unmanned
combat rotorcraft will have similar size to modern attack helicopters, and will undoubtedly
have to be agile to increase survival rates in hostile environments.

Another research venue is to determine how to use the newly created capability for
autonomous agile flight. Should this capability be incorporated into motion planning algo-
rithms, or should a human operator have access to a library of maneuvers from which to
choose at his discretion?

Finally, in order to use these vehicles in a cluttered urban environment, an alternative
to GPS updates for a state estimator will have to be found. In addition, reliable sensors
and algorithms for collision avoidance will have to be developed. A city represents a rich
and highly structured environment for visual odometry. In the future, imaging sensors will
probably be used for collision avoidance, along with such devices as a sonar or a miniature
laser range finder.

In conclusion, we hope that the work presented in this thesis brings us one step closer
to creating a truly capable aerial robot, which will have the agility of a falcon, and will be
able to use it to accomplish a complex mission.
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