
Distributed	Control	Architectures:	New	Middleware	for	Smart	Software	and	Hardware	
Scheduling	

	
A	keynote	presented	to	the	Science	and	Technology	Organization	of	the	

North	Atlantic	Treaty	Organization	
On	May	11,	2021	

	
Eric	Feron	

Professor	of	Electrical	Computer,	and	Mechanical	Engineering	
King	Abdullah	University	of	Science	and	Technology	

eric.feron@kaust.edu.sa	
	

Dear	listeners,	the	point	of	my	presentation	is	to	propose	the	use	of	intelligent	algorithms	to	
support	the	management	of	safety-critical	software.	Such	software	includes,	of	course,	the	
embedded	software	that	implements	engine	control	architectures.	
	
There	are	two	types	of	computing	machinery.	On	the	one	hand,	there	are	monolithic	machines	
that	are	highly	reliable	and	massive.	Such	machinery	is	very	costly	and	it	is	present	in	all	of	
today’s	systems	wherever	such	systems	are	safety-critical.	That	includes	all	aircraft	and	their	
subsystems,	including	their	propulsion	systems.	On	the	other	hand,	we	are	witnessing	the	
ubiquitous	emergence	of	very	powerful	and	miniaturized	computing	systems.	These	computing	
systems	are	present	in	our	cellular	phones	and	our	laptop	computers.	While	they	are	much	less	
reliable	than	their	safety-critical	counterparts,	they	are	also	far	less	expensive.	The	popularity	of	
the	devices	they	power	means	that	far	more	investment	goes	into	R&D	and	manufacturing	of	
these	devices	rather	than	into	the	devices	that	our	industry	has	grown	accustomed	to.	The	split	
between	consumer-oriented	computing	systems	and	the	safety-critical	computing	systems	we	
rely	upon	means	that	our	industry	is	at	risk	of	being	left	behind	by	the	rapid	evolution	of	
technology.	What	is	even	worse,	our	system	development	paradigms	and	assumptions	may	
become	invalidated	if	we	cannot	procure	the	chips	our	development	methods	for	safety-critical	
systems	have	grown	to	rely	upon:	What	is	the	worth	of	years	developing	regulations	and	“good	
practices”	in	embedded	computer	architecture	development	if	the	only	chips	we	can	find	in	the	
future	are	multi-core	processors	that	we	do	not	understand?	What	is	the	worth	of	the	many	
SAE	documents,	ARP	4761	but	especially	ARP	4754,	and	what	to	think	of	the	RTCA	documents,	
such	as	DO-178C	or	DO-254	if	the	practices	they	refer	to	disappear	because	the	hardware	upon	
which	they	rely	has	gone?	Our	industry	is	facing	the	necessity	to	adapt	to	the	rapid	evolution	of	
the	hardware	that	supports	its	safety-critical	information	technology.	Today,	there	are	groups	
that	work	very	hard	on	incorporating	multi-core	systems	and	distributed	computing	within	
aerospace	standards.	For	example,	the	Certification	Authorities	Software	Team	–	CAST	–	has	
produced	a	document,	CAST	–	32	aimed	at	exploring	and	defining	the	proper	use	of	multicore	
processors	inside	embedded	safety-critical	systems.	The	purpose	of	such	activities	is	to	see	
whether	we	can	adopt	better	practices	to	leverage	multi-core	processors	than,	say,	waste	the	
multi-processor	opportunity	to	accommodate	our	habits	by	turning	off	all	cores	but	one.	
	



With	the	support	of	SAFRAN	and	the	US	Air	Force	Research	Laboratory,	my	group	has	embarked	
into	the	process	of	doing	just	that:	Try	and	make	the	best	use	of	available	and	increasingly	
distributed	and	powerful	computational	hardware.	We	have	explored	several	directions,	which	
I	will	now	describe	in	more	detail.	
	
First,	there	is	the	opportunity	to	use	more	distributed	computational	procedures	for	the	
purpose	of	reducing	the	acquisition	cost	and	maintenance	of	embedded	control	architectures	
for	propulsion	systems.	Here,	we	are	interested	in	the	traditional,	point-to-point	control	
architecture	used	in	jet	engines,	whereby	a	centralized	computer	performs	several	missions,	
drawing	information,	such	as	temperature,	pressure,	angular	speeds	directly	from	available	
sensors	and	sending	the	result	of	its	computations	to	the	appropriate	actuators,	such	as	air	
bleed	vanes,	fuel	flow	valves,	or	ducts.	This	centralized	architecture	offers	strong	control	over	
event	timing	and	the	possibility	of	completely	mastering	the	information	flow	process	and	
chasing	bugs	until	no	frames	are	dropped	and	the	entire	system	works	perfectly.	Such	an	
architecture	is	the	one	I	chose,	together	with	my	MIT	student	team	when	we	embarked	into	
building	the	avionics	of	what	would	end	up	being	the	first	fully	autonomous,	aerobatic	
helicopter	in	the	world	back	in	2001.	In	the	context	of	propulsion	systems,	I	heard	accounts	of	
other	bonuses	offered	by	point-to-point	architectures,	which	is	the	presence	of	many	cables	
used	by	the	embedded	computing	system	to	communicate	with	sensors	and	actuators	offer	as	
many	grip	points	for	the	people	in	charge	of	monitoring	and	maintaining	these	engines.	A	
distributed	control	architecture	transforms	this	legacy	system	into	an	architecture	based	on	a	
data	bus,	whereby	each	component	of	the	system	connects	to	the	data	bus	and	the	bus	is	in	
charge	of	conveying	the	information	around	all	sensors,	actuators,	and	computers.	This	
distributed	architecture	offers	the	advantage	of	improved	flexibility,	allowing	each	element	to	
be	replaced	or	updated	by	another	and	use	a	standardized	communication	medium	to	ensure	
all	components	can	still	talk	to	each	other.	However,	the	basic	safety-criticality	issue	remains	
and,	while	a	lot	flexibility	is	enabled	by	a	distributed	computing	network,	the	quality	of	the	
service	delivered	by	the	system	must	remain.	For	example,	there	may	be	more	flexibility	about	
when	a	packet	or	a	frame	may	be	sent	out,	but	that	packet	should	still	be	received	and	not	
accidentally	dropped.	During	our	research,	we	have	found	that	significant	control	over	activity	
scheduling	over	a	communication	network	could	be	achieved	by	relying	on	dedicated	
optimization	techniques	originally	developed	by	operations	research	for	desktop	applications.	
Such	techniques	include	mixed-integer	programming	techniques.		
	
Second,	there	is	the	opportunity	brought	by	having	a	massive	number	of	low-cost	processors.	
While	many	think	of	such	a	computing	bounty	as	the	opportunity	to	cram	in	ever	
computationally	greedier	applications	of	signal	processing,	data	mining	and	other	prognosis	and	
health	monitoring	products,	my	focus	remains	stuck	on	a	single	number	that	is	1e-9.	This	is	the	
maximum	number	of	lethal	accidents	a	commercial	airliner	is	allowed	to	experience	every	hour.	
Redundancy	is	one	of	the	key	and	well-understood	mechanisms	that	allows	our	trade	to	meet	
such	an	exorbitant	reliability	goal	with	what	are	usually	far	less	reliable	components,	and	
redundant	architectures	have	been	part	of	the	standard	diet	of	safety-critical	avionics	engineers	
for	as	long	as	human	lives	have	begun	to	matter	in	aviation.	The	new	element	we	have	
addressed	is	understanding	how	we	can	address	demanding	redundancy	needs	when	individual	



computing	elements	become	frankly	unreliable.	That	there	be	more	of	these	elements	is	a	
given,	but	allocating	tasks	to	them,	whether	the	elements	are	neatly	arranged	in	a	multi-core	
architecture	or	scattered	around	with	creative	wiring	options	is	not	as	obvious.	In	our	
laboratory,	we	have	leveraged	existing	intelligent	algorithms	to	perform	highly	flexible	software	
allocation	and	re-allocation.	Again,	for	us,	that	means	using	the	optimization	techniques	I	know	
best,	including	mixed-integer	programming	with	the	special	twist	that	they	must	be	used	in	a	
high-tempo	environment.	Armed	with	this	philosophy,	we	have	demonstrated	how	it	is	possible	
to	take	a	large	number	of	computing	resources	and	dynamically	re-allocate	safety-critical	tasks	
as	computing	elements	fail,	while	making	these	failures	invisible	to	the	propulsion	system	
operator.	On	the	way	to	this	demonstration,	we	have	met	interesting	questions,	such	as	“who	
allocates	the	software	allocators?”	This	kind	of	questions	is	similar	in	nature	to	the	question	
“who	compiles	the	compiler?”	familiar	to	computer	scientists	and	is	always	the	opportunity	fer	
exchanging	existential	questions	among	researchers.	Fortunately,	the	allocator	allocation	
problem	is	well-posed:	The	allocator	does	indeed	allocate	itself.	More	precisely,	three	
allocators	decide	who	should	be	reallocated	and	who	should	perform	the	reallocation,	should	
this	become	necessary.	Related	and	important	problems	we	got	interested	in	along	the	way	
include	developing	reliable	mechanisms	to	identify	faulty	nodes	without	saturating	an	already	
busy	communication	network.	
	
Last,	I	would	like	to	talk	about	distributed	architecture	design.	Once	again,	the	key	number	to	
remember	is	1e-9.	Given	a	set	of	low-cost	computing	resources,	how	do	we	connect	them	so	
that	the	service	they	provide	can	be	performed	with	super-high	reliability?	Before	going	in	this	
direction	any	further,	I	would	like	to	point	out	that	the	question	initially	asked	extends	to	the	
entire	system	design	problem:	Safety-critical	functions	also	involve	sensors	and	actuators.	
Therefore,	a	more	appropriate	question	is:	Given	a	set	of	computing	resources,	a	set	of	sensors	
and	a	set	of	actuators,	how	do	we	connect	them	so	that	the	service	they	provide	is	super-
reliable?	For	example,	my	team	currently	aims	at	building	a	new	kind	of	drone	that	features	256	
brushless	motors	and	64	Pixhawk	boxes,	which	include	both	sensing	and	computing	
capabilities.	Finding	out	how	I	should	wire	all	these	components	to	obtain	maximum	vehicle	
reliability	is	a	question	that	also	makes	sense.	To	answer	these	questions,	we	have	developed	
off-line	optimization	models	that	rely	on	recently	developed	algorithms	to	solve	geometric	and	
signomial	optimization	problems.	These	optimization	models	allow	us	to	answer	questions	such	
as,	given	a	set	of	components,	how	reliable	an	architecture	can	we	build	based	on	these	
components?	Or,	given	a	reliability	goal	and	a	number	of	component	options,	what	is	the	
minimum	price	to	be	paid	to	achieve	that	reliability	level?	We	have	posed	and	brought	
satisfactory	answers	to	these	questions	for	both	few	and	large	numbers	of	components.	We	
have	also	matched	and	validated	our	results	against	existing	distributed	computing	
architectures	found	on	large	airliners.	Of	course,	when	we	face	these	problems,	the	data	that	is	
often	missing	is	component-level	reliability	figures.	Our	discussions	with	aircraft	manufacturers	
indicate	that	the	main	source	of	well-documented	hardware	is	that	provided	by	the	automotive	
industry,	thus	indicating	a	possible	rapprochement	between	the	aerospace	and	automotive	
distributed	computation	systems	in	the	future.	


